Министерство науки и высшего образования Российской федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ОБЪЕДИНЕННЫЙ ИНСТИТУТ ВЫСОКИХ ТЕМПЕРАТУР РОССИЙСКОЙ АКАДЕМИИ НАУК (ОИВТ РАН)

УДК 536.763:536.764:544.344.2 Рег№ НИОКТР ГР АААА-А19-119061490106-6 Рег№ ИКРБС

УТВЕРЖДАЮ

Директор ОИВТ РАН, академик РАН

_____О.Ф. Петров «____» ____ 2019 г.

ОТЧЕТ О НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ

ИССЛЕДОВАНИЕ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ РАБОЧИХ ВЕЩЕСТВ, ИСПОЛЬЗУЕМЫХ В ВОЗОБНОВЛЯЕМЫХ ЭНЕРГОВЫРАБАТЫВАЮЩИХ СИСТЕМАХ ПРИ ВЫСОКИХ ТЕМПЕРАТУРАХ И ДАВЛЕНИЯХ (промежуточный за 2019)

Руководитель НИР доктор техн.наук

И.М. Абдулагатов

СПИСОК ИСПОЛНИТЕЛЕЙ

Руководитель темы доктор технических наук, заведующий лабораторией	Абдулагатов И. М. (введение, заключение, общее редактирование)
Исполнители:	
Ведущий научный сотрудник, доктор технических наук,	Дворянчиков В. И. (раздел 1)
Главный научный сотрудник, доктор технических наук	Базаев А. Р. (раздел 2)
Ведущий научный сотрудник, кандидат технических наук	Базаев Э. А. (раздел 2)
Старший научный сотрудник, кандидат технических наук	Джаппаров Т. А. (раздел 2)
Научный сотрудник	Османова Б. К. (раздел 2)
Главный научный сотрудник, доктор технических наук	Эмиров С. Н. (раздел 3)
Ведущий научный сотрудник, кандидат технических наук	Рамазанова А. Э. (раздел 3)
Старший научный сотрудник, кандидат физико-математических наук	Петрик Г. Г. (раздел 4)

Содержание							
Реферат	4						
Список сокращений	5						
Раздел 1. Исследования термодинамических свойств бинарных водно-солевых систем как основных компонентов геотермальных флюидов	6						
Раздел 2. Экспериментальное исследование фазовых превращений и критических свойств растворов (рабочих веществ), состоящих из низкокипящих и высококипящих жидкостей, с целью получения оптимальных данных по термодинамическим свойствам для расчета циклов энергоустановок	9						
Раздел 3. Экспериментальные и теоретические исследования транспортных и термодинамических свойств флюидонасыщенных горных пород при высоких температурах и давлениях	16						
Раздел 4. Моделирование теплофизических свойств рабочих агентов энерговырабатывающих систем	25						
Заключение Использованная литература Публикации	32 33 34						

3

РЕФЕРАТ

Отчет 38 с., 15 рис., 9 табл., 53 публикации, список ист.48.

ТЕПЛОФИЗИЧЕСКИЕ СВОЙСТВА, ГОРНАЯ ПОРОДА, ГЕОТЕРМАЛЬНЫЕ СИСТЕМЫ, ТЕПЛОПРОВОДНОСТЬ, ФЛЮИДОНАСЫЩЕНИЕ, ДАВЛЕНИЕ, ФЛЮИДЫ, ИЗОХОРНАЯ ТЕПЛОЕМКОСТЬ, ФАЗОВОЕ РАВНОВЕСИЕ, ВОДНЫЕ РАСТВОРЫ СОЛЕЙ, ТЕРМИЧЕСКИЕ СВОЙСТВА И ФАЗОВЫЕ ДИАГРАММЫ УГЛЕВОДОРОДНЫХ СИСТЕМ, КРИТИЧЕСКИЕ ЯВЛЕНИЯ, КРИТИЧЕСКИЕ ЛИНИИ ДВУХ- И ТРЕХКОМПОНЕНТНЫХ СМЕСЕЙ, УРАВНЕНИЕ СОСТОЯНИЯ РАБОЧИХ АГЕНТОВ, МОДЕЛИРОАВНИЕ ГЕТЕРМАЛЬНЫХ РЕЗЕРВУАРОВ.

Объектами исследований являются геотермальные системы – сухие и флюидонасыщенные горные породы, многокомпонентные геотермальные флюиды и водные растворы солей, углеводородные смеси и другие рабочие агенты используемые в энерговырабатывающих системах.

Цель работы – обеспечение растущих потребностей новых технологий производства геотермальной энергии достоверными данными о теплофизических свойствах рабочих агентов И моделирование геотермальных резервуаров; экспериментальное исследование фазового поведения (PVTx свойств) сложных многокомпонентных углеводородных систем при высоких температурах и давлениях, включая критическую и сверхкритическую области; экспериментальное исследование теплопроводности сухих и флюидонасыщенных горных пород при высоких температурах и давлениях; экспериментальное исследование плотности, теплоемкости и вязкости природных геотермальных флюидов и водных растворов солей; разработка надежных малопараметрических и физически обоснованных уравнений состояния и расчет термодинамических свойств рабочих агентов энерговырабатывающихся систем.

Получены новые экспериментальные данные о PVTx зависимости тройной системы *н-пропанол–н-гептан* для различных составов в интервале температур от 373.15 до 673.15 К и давлений до 40 МПа. Интервал включает линию насыщения ($p_s \rho_s, T_s$ -зависимость), однофазную (паровую, жидкую), критическую и сверхкритическую области. Исследовано поведение фазовой диаграммы двухкомпонентной системы вблизи критической точки жидкость-газ.

Экспериментально исследована изохорная теплоёмкость и $T-\rho$ зависимости водных растворов солей MgSO₄ (2% масс) на линии сосуществования фаз Исследованы термодинамические свойства (Cp,C_V) геотермальных флюидов из разных источников в зависимости от температуры. Разработан метод определения теплопроводности водных растворов солей и её зависимость от состава на основе теории Риделя.

Экспериментально исследована эффективная теплопроводность газо-, водо- и маслонасыщенного пористого песчаника (*Австралия, Monash University*)) при гидростатических давлениях до 400 МПа в области температур 273-523 К, угля, андизита и амфиболита на основе абсолютного компенсационного метода плоских пластин в стационарном тепловом режиме. Выявлен механизм влияния температуры и давления на эффективную теплопроводность ($\lambda_{эф}$).

Разработано физически обоснованное малопараметрическое уравнение состояние рабочих агентов энерговырабатывающих систем на основе молекулярной модели взаимодействующих точечных центров. Полученное уравнение состояния может быть рекомендовано для расчетов термодинамического поведения рабочих веществ используемых в энерговырабатывающих системах.

Результаты исследований могут быть использованы при оптимизации геотермальных расчетов, моделировании подземных геотермальных резервуаров и позволяют повысить эффективность технологий использования геотермальной энергетики.

Обозначения и сокращения:

- f текучесть, $\Pi a^{-1} \cdot c^{-1}$;
- η динамическая вязкость, мкПа $^{\cdot}$ с;
- ФП фазовое превращение;
- КС критическое состояние;
- *T* температура, К;
- *p* давление, МПа;
- ρ плотность, кг/м³;
- ρ_m молярная плотность, кмоль/м³;
- *T*_s температура ФП, К;
- p_s давление на ФП, МПа;
- ρ_{s} , плотность ФП, кг/м³;
- *Т*_к критическая температура, К;
- *р*_к, критическое давление, МПа;
- ρ_{κ} , критическая плотность, кг/м³;
- х концентрация, мольные доли (м.д.) н-гексана;
- *R* универсальная (молярная) газовая постоянная, Дж/кмольК;
- $Z=p/\rho_m RT$ фактор сжимаемости;
- $\tau = T/T_{\kappa}$ приведенная температура;
- ω=ρ/ρ_к приведенная плотность.
- λ теплопроводность, Bt/(м·K)
- C_V изохорная теплоемкость, кДж/кг·К

Раздел 1. Исследования термодинамических свойств бинарных водно-солевых систем как основных компонентов геотермальных флюидов.

Этап 2019 г. Исследование теплоёмкости и Т-р зависимости водных растворов солей MgSO₄. Определение зависимости теплопроводности многокомпонентных водносолевых систем.

Реферат. Отчёт состоит из 6 страниц, 3 рисунков, 15 использованных источников, 4 научных публикаций.

Ключевые слова: адиабатный калориметр, изохорная теплоемкость, фазовое равновесие, водные растворы солей, удельный объем, термоэлемент, температурный ход, теплопроводность, масса иона, внешняя оболочка иона

1.Исследование теплоёмкости и Т-р зависимости водных растворов солей MgSO4

Введение

В геотермальной энергетике, при решении оптимизационных задач эффективности, необходимо учитывать факт температурной зависимости теплоёмкости и плотности. Учёт температурной зависимости таких параметров как плотность и теплоёмкость при расчётах существенно влияет на значения критерия эффективности, которые необходимо учитывать, ибо в противном случае погрешность вычислений может составить десятки процентов.

Важной проблемой геотермальной энергетики является повышение конкурентоспособности по сравнению традиционными энергетическими отраслями. Для улучшения технико-экономических показателей геотермального производства необходимо как применение новейших технологий извлечения, использование и применение систем комбинированных с традиционными источниками энергии, так и разработка и исследование соответствующих моделей геотермальных систем с целью оптимизации их параметров.

Достигнутые показатели развития нетрадиционной энергетики в мире и место в ней геотермальной энергетики указывает на то, что доля геотермальных источников достигает 60% выработки энергии на основе нетрадиционных источников энергии [1-4].

Отличительной особенностью геотермальной энергетики является её масштабность, возможность комплексного использования и доступность для добычи современными техническими средствами.

С учетом этого, также принимая во внимание значительные разведанные запасы термальных вод, геотермальную энергетику можно считать приоритетным направлением развития Российской энергетики среди возобновляемых источников энергии.

В связи с этим проблема оптимизации процессов извлечения, использования геотермальных ресурсов становится актуальной практической задачей на пути активного их вовлечения в энергетический баланс.

Задачи оптимизации имеют большое практическое значение, так как позволяют определить такие значения параметров систем, оптимизирующие тот или иной критерий эффективности. Однако при оценке сложной системы нельзя оценивать её эффективность только лишь на основе одного, даже очень важного критерия. При этом приходится учитывать требования технического, экономического, экологического и другого характера.

О чём свидетельствуют данные экспериментального исследования, полученные для геотермальных флюидов различной минерализации на линии фазового равновесия [5]. Применение современных физико-химических методов исследования необходимо для успешного освоения и использования термальных вод в теплоэнергетике.

Экспериментальная часть

Для определения изохорной теплоёмкости на линии фазового равновесия нами использована установка адиабатного калориметра Х.И. Амирханова. Ранее этим методом были исследованы ряд водно-солевых систем и геотермальные флюиды [6-8]. Описание методики измерения даны в предыдущих работах [7-10].

Тепловой эквивалент калориметра был определён по воде [6, 11], т.е с использованием стандартного вещества с хорошо изученной теплоёмкостью, в интервале температур T=30-200°C. При этом учитывалась теплоемкость материала калориметра. Для нашего случая постоянная калориметра описывалась уравнением:

$$C_0 = 77,48 + 0,12$$
 T

где Т - температура К, С-теплоемкость Дж · К⁻¹.

Измерения теплоемкости проводились по квазиизохорам методом непрерывного нагрева. Такой метод позволяет с высокой точностью найти температуру фазового перехода T_S системы, т.е. определить $T_S - \rho_S$ данные на кривой сосуществования фаз, измерить величину скачка ΔC_v и получить надежные данные C_v в различных фазовых состояниях.

Метод позволяет определить изохорную теплоёмкость в двухфазной, однофазной областях и на кривой фазового равновесия. Оценка точности эксперимента по температуре ± 10 мК, удельного объёма $\pm 0,1\%$, теплоёмкости 0,8-1% со стороны жидкости.

Продолжено изучение термодинамических и калорических свойств водно-солевых систем, а именно – измерение $C_v(T)$ зависимости на линии фазового равновесия системы MgSO₄ + H₂O в интервале температур 373-473К и концентрации x=0.25% масс.. С использованием установки адиабатического калориметра, определена изохорная теплоёмкость водных растворов MgSO₄ вдоль линии фазового равновесия. На основе полученных данных рассчитаны значения $C_p(T)$ в измеренном интервале температур по формуле:

$$C_{p} = C_{v}^{A.\phi.} + G(2 + G/\Delta C_{v})$$

где $G = T \cdot dp/dT \cdot dv/dT;$

Рис.1.1.Зависимость теплоемкости от температуры: ■ – воды; ◆ - водный раствор MgSO₄ (0.25 % масс.).

2. Теплопроводность водных растворов солей и её зависимость от физикохимических свойств ионов

Установлены некоторые закономерности зависимости теплопроводности водных растворов солей от массы и числа электронов на внешней оболочке ионов.

Для водных растворов бинарных и многокомпонентных неорганических веществ Ридель [1] предложил формулу для определения коэффициента теплопроводности водных растворов солей, кислот и щелочей при температуре 293 К

$$\lambda^{\mathcal{I}_{nek.}}_{(N,T=293)}=\lambda^{H_2O}_{(T=293)}+1,163{\displaystyle\sum_{i}a_iN_i}$$
 ,

где $\lambda_{(N,T=293)}^{3ne\kappa}$ и $\lambda_{(T=293)}^{H_2O}$ – соответственно теплопроводность, Вт/(м · К) электролита и воды при температуре 293 К; 1.163 –коэффициент перевода единицы измерения теплопроводности из ккал/(м × ч × град) в Вт/(м · К); a_i – коэффициенты, характерные для каждого иона, определённые из опытных данных по теплопроводности растворов; N_i – концентрация электролита, моль/л.

На рисунке 1.2. представим ионы (5Mn2⁺, 6Fe2⁺, 7*Ca2⁺, 8Ni2⁺, 9Cu2⁺, 10*Zn2⁺), которые есть в водных растворах солей и установим как они влияют на теплопроводность раствора. Таблица была представлена в работе [4].

Примечание. Цифра перед ионом – количество электронов на наружном слое внешней оболочки иона.

Если ионы (5Mn2⁺, 6Fe2⁺, 7*Ca2⁺, 8Ni2⁺, 9Cu2⁺, 10*Zn2⁺) имеют приблизительно равные радиусы, но отличаются количеством электронов на наружном слое внешней оболочки иона, то ион с большим числом электронов на наружном слое внешней оболочки иона имеет меньший характерный коэффициент (*a*i), т. е. теплопроводность раствора ухудшается – (Таблица, рисунок 1.2, формула).

Рис. 1.3. Зависимость характерных коэффициентов (a_i) от массы ионов.

Выводы

- 1. Ионы, имеющие приблизительно равные массы и количества электронов на наружном слое внешней оболочки ионов (6Rb⁺ и 6*Sr2⁺), (6Cs⁺ и 6*Ba2⁺), (10Au⁺ и 10Hg2⁺), (10^{*}Ag⁺ и 10Cd2⁺), (10Cu⁺ и 10^{*}Zn2⁺), но разные по величине радиусы, т.е. радиусы однозарядных катионов (в скобках) больше, чем у двухзарядных, а соответственно отличаются и характерные коэффициенты (*a*i) в зависимости от размеров ионов (Рисунок 1.3.).
- 2. Если массы и радиусы ионов близки к массе и радиусу молекулы воды, то такие ионы незначительно влияют на теплопроводность раствора, а чем больше разница в размерах (в сторону увеличения или уменьшения), тем меньше теплопроводность раствора (Рисунок 1.3,).

Раздел 2. Экспериментальное исследование фазовых превращений и критических свойств растворов (рабочих веществ), состоящих из низкокипящих и высококипящих жидкостей, с целью получения оптимальных данных по термодинамическим свойствам для расчета циклов энергоустановок.

Этап 2019г. p,p,T,x-измерения системы н-пропанол—н-гептан в субкритической, критической и сверхкритической областях параметров состояния для значений состава 0.8 мол. долей н-гептана в диапазоне температур 373.15-623.15 К и давлений до 40 МПа.

Реферат. Отчет состоит из 9 страниц, 5 рисунков, 2 таблиц, 2 использованных источников, 8 научных публикаций.

Ключевые слова: пьезометр, температура, давление, плотность, концентрация, фактор сжимаемости, изохоры, изотермы, фазовые превращения, кривая сосуществования, критические параметры, критические линии

В отчете представлены результаты р, р, Т, х - измерения системы н-пропанол-н-гептан в субкритической, критической и сверхкритической областях параметров состояния для различных значений состава в диапазоне температур 373.15-623.15 К и давлений до 40 МПа. Таблицы и фазовые диаграммы в различных сечениях термодинамической поверхности р, р, Т, х. Таблицы и диаграммы параметров фазовых превращений и критического состояния системы. Уравнения состояния, описывающее р, р, Т, хзависимость смесей в сверхкритическом состоянии.

Введение

Исследование фазового поведения и объемных свойств (p,ρ,T,x -зависимость) смесей, состоящих из двух и более технически важных полярных и неполярных жидкостей (вода, спирт, углеводород и т.д.), отличающихся молекулярной структурой и температурами кипения, в широком диапазоне температур, давлений и состава представляет интерес для теории растворов и востребовано для инженерных расчетов высокоэффективных технологических процессов в химической, нефтехимической, энергетической и фармацевтической отраслях промышленности.

Практическое применение известных кубических уравнений состояния и корреляций для описания фазовых равновесий смесей требует знание их критических параметров. Вместе с тем достоверные экспериментальные данные о ФП и КС смесей полярных и неполярных веществ несут фундаментальную информацию о характере межмолекулярного взаимодействия и важны для разработки адекватных моделей потенциалов взаимодействия, а также единого уравнения состояния.

Основная часть отчета о НИР

Методом сжимаемости с помощью безбалластного пьезометра постоянного объема по изохорам получены новые экспериментальные данные о p,T и p,ρ,T -зависимостях двойной системы н-пропанол–н-гептан состава (x) 0.8 мольных долей по изохорам в двухфазной, однофазной (газовой, жидкой), околокритической и сверхкритической областях параметров состояния, в диапазоне по температуре 373.15–623.15 К, давлению до 40 МПа и плотности 26–590 кг/м³ (таблица 2.1, рис. 2.1, 2.2).

По изломам изохор определены параметры точек ФП жидкость \leftrightarrows пар (p_s, ρ_s, T_s) и графоаналитическим методом, с учетом скейлингового поведения, параметры точек КС ($p_{\kappa}, \rho_{\kappa}, T_{\kappa}$) (таблица 2.2). Проекции кривой сосуществования на координатные плоскости представлены на рис.2.3-2.5.

Т (К)	р (МПа)	Т (К)	р (МПа)	Т (К)	р (МПа)	Т (К)	р (МПа)	Т (К)	р (МПа)		
	ρ(κг/м³)										
25	5,99	38	3,48	73	3,51	10	7,45	13	132,46		
373,15	0,060	373,15	0,070	373,15	0,080	373,15	0,089	373,15	0,098		
383,15	0,119	383,15	0,130	383,15	0,140	383,15	0,150	383,15	0,160		
393,15	0,182	393,15	0,193	393,15	0,205	393,15	0,218	393,15	0,231		
403,15	0,251	403,15	0,262	403,15	0,273	403,15	0,284	403,15	0,296		
413,15	0,337	413,15	0,350	413,15	0,361	413,15	0,373	413,15	0,385		
423,15	0,437	423,15	0,449	423,15	0,461	423,15	0,473	423,15	0,485		
433,15	0,537	433,15	0,551	433,15	0,567	433,15	0,581	433,15	0,595		
443,15	0,657	443,15	0,677	443,15	0,694	443,15	0,710	443,15	0,724		
448,15	0,722	453,15	0,838	453,15	0,861	453,15	0,883	453,15	0,902		
453,15	0,782	463,15	1,008	463,15	1,051	463,15	1,077	463,15	1,098		
456,15	0,813	473,15	1,167	473,15	1,247	473,15	1,279	473,15	1,302		
457,15	0,821	475,15	1,191	483,15	1,457	483,15	1,494	483,15	1,518		

Таблица 2.1. Экспериментальные *p*, *р*, *T*-зависимости системы н-пропанол–н-гептан состава (*x*) 0.8 мольных долей.

458,15	0,828	477,15	1,213	493,15	1,687	493,15	1,738	493,15	1,763
459,15	0,835	478,15	1,222	498,15	1,799	503,15	2,003	503,15	2,030
463,15	0,857	479,15	1,231	500,15	1,840	511,15	2,218	513,15	2,328
473,15	0,898	480,15	1,239	501,15	1,861	512,15	2,247	518,15	2,486
483,15	0,933	483,15	1,263	502,15	1,882	513,15	2,273	519,15	2,518
493,15	0,967	493,15	1,327	503,15	1,902	514,15	2,299	520,15	2,553
503,15	0,995	503,15	1,378	504,15	1,922	515,15	2,322	521,15	2,586
513,15	1,022	513,15	1,427	513,15	2,091	518,15	2,399	522,15	2,614
523,15	1,047	523,15	1,470	523,15	2,228	523,15	2,528	523,15	2,637
533,15	1,071	533,15	1,516	533,15	2,337	533,15	2,767	533,15	2,898
543,15	1,098	543,15	1,559	543,15	2,447	543,15	2,967	543,15	3,173
553,15	1,124	553,15	1,604	553,15	2,552	553,15	3,147	553,15	3,407
563,15	1,147	563,15	1,647	563,15	2,655	563,15	3,318	563,15	3,633
573,15	1,171	573,15	1,685	573,15	2,757	573,15	3,477	573,15	3 <i>,</i> 856
583,15	1,198	583,15	1,730	583,15	2,857	583,15	3,638	583,15	4,068
593,15	1,222	593,15	1,774	593,15	2,957	593,15	3,798	593,15	4,274
603,15	1,247	603,15	1,819	603,15	3,057	603,15	3,957	603,15	4,480
613,15	1,272	613,15	1,864	613,15	3,137	613,15	4,108	613,15	4,687
623,15	1,298	623,15	1,904	623,15	3,218	623,15	4,265	623,15	4,893
15	9,51	19	9,72	22	2,85	23	7,66	25	6,43
373,15	0,106	373,15	0,114	373,15	0,122	373,15	0,126	373,15	0,130
383,15	0,170	383,15	0,179	383,15	0,187	383,15	0,191	383,15	0,195
393,15	0,240	393,15	0,250	393,15	0,258	393,15	0,263	393,15	0,267
403,15	0,308	403,15	0,320	403,15	0,330	403,15	0,335	403,15	0,340
413,15	0,396	413,15	0,406	413,15	0,416	413,15	0,422	413,15	0,426
423,15	0,496	423,15	0,506	423,15	0,516	423,15	0,522	423,15	0,526
433,15	0,607	433,15	0,617	433,15	0,626	433,15	0,636	433,15	0,634
443,15	0,738	443,15	0,751	443,15	0,761	443,15	0,770	443,15	0,770
453,15	0,918	453,15	0,934	453,15	0,946	453,15	0,955	453,15	0,955
463,15	1,120	463,15	1,136	463,15	1,147	463,15	1,157	463,15	1,157
473,15	1,318	473,15	1,332	473,15	1,344	473,15	1,352	473,15	1,359
483,15	1,534	483,15	1,549	483,15	1,563	483,15	1,570	483,15	1,579
493,15	1,781	493,15	1,798	493,15	1,814	493,15	1,822	493,15	1,831
503,15	2,047	503,15	2,063	503,15	2,074	503,15	2,086	503,15	2,095
513,15	2,359	513,15	2,377	513,15	2,392	513,15	2,403	513,15	2,413
523,15	2,698	523,15	2,727	523,15	2,745	523,15	2,756	523,15	2,768
524,15	2,735	526,15	2,843	526,15	2,861	526,15	2,876	526,15	2,888
525,15	2,774	527,15	2,882	527,15	2,902	527,15	2,917	527,15	2,930
526,15	2,811	527,35	2,890	527,65	2,924	527,15	2,917	527,65	2,951
527,15	2,843	528,15	2,917	528,15	2,945	528,15	2,960	528,15	2,972
528,15	2,870	529,15	2,953	533,15	3,131	529,15	3,001	533,15	3,193
533,15	3,007	533,15	3,086	538,15	3,341	533,15	3,166	538,15	3,427
543,15	3,323	543,15	3,456	543,15	3,547	543,15	3,608	543,15	3,682
553,15	3,613	553,15	3,827	553,15	3,955	553,15	4,060	553,15	4,191
563,15	3,904	563,15	4,194	563,15	4,369	563,15	4,510	563,15	4,687
573,15	4,186	573,15	4,569	573,15	4,785	573,15	4,942	573,15	5,196
583,15	4,471	583,15	4,942	583,15	5,196	583,15	5,392	583,15	5,687
593,15	4,752	593,15	5,304	593,15	5,594	593,15	5,834	593,15	6,195
603,15	5,025	603,15	5,667	603,15	6,011	603,15	6,2/3	603,15	6,696
613,15	5,307	613,15	6,040	613,15	6,411	613,15	6,725	613,15	7,195
623,15	5,588	623,15	0,411 0,20	623,15	0,804 2.07	623,15	7,165	623,15	7,706
28	8,18 0 1 2 C	32	0,38	35	2,8/	39	1,08	44	8,50
3/3,15	0,130	3/3,15	0,142	3/3,15	0,147	3/3,15	0,153	3/3,15	0,160
383,15 202.15	0,201	383,15 202.15	0,207	383,15 202.1F	0.204	383,15 202.15	0,219	383,15 202.15	0,220
222,12 102 1E	0.273	293,15 102 1E	0,279	393,15 102 1E	0,284	293,15 102 1E	0,291	393,15 102 1E	0,298
403,13	0,340	403,13	0,352	403,15 /12.15	0,339	403,15 /12 15	0,300	403,13	0,374
410,10	0,434	413,13	0,442	413,13	0,400	413,13	0,400	413,13	0,403

423,15	0,533	423,15	0,540	423,15	0,547	423,15	0,554	423,15	0,562
433,15	0,642	433,15	0,649	433,15	0,657	433,15	0,665	433,15	0,675
443,15	0,779	443,15	0,787	443,15	0,794	443,15	0,803	443,15	0,815
453,15	0,965	453,15	0,975	453,15	0,984	453,15	0,994	453,15	1,005
463,15	1,167	463,15	1,177	463,15	1,187	463,15	1,196	463,15	1,209
473,15	1,369	473,15	1,381	473,15	1,392	473,15	1,403	473,15	1,417
483,15	1,589	483,15	1,602	483,15	1,616	483,15	1,628	483,15	1,640
493,15	1,843	493,15	1,854	493,15	1,866	493,15	1,879	493,15	1,894
503,15	2,109	503,15	2,122	503,15	2,136	503,15	2,151	498,15	2,028
513,15	2,428	513,15	2,441	513,15	2,457	513,15	2,471	499,15	2,054
523,15	2,780	523,15	2,792	521,15	2,733	515,15	2,538	500,65	2,100
526,15	2,902	524,15	2,831	522,15	2,769	516,15	2,574	501,15	2,177
527,15	2,943	525,15	2,873	523,15	2,804	517,55	2,625	502,15	2,357
528,15	2,988	526,15	2,916	523,60	2,820	518,15	2,700	503,15	2,508
529,15	3,037	527,15	2,978	525,15	2,951	519,15	2,820	513,15	4,098
533,15	3,227	528,15	3,045	528,15	3,198	523,15	3,298	523,15	5,766
538,15	3 <i>,</i> 485	533,15	3,371	533,15	3,617	533,15	4,491	533,15	7,392
543,15	3,756	543,15	4,046	543,15	4,491	543,15	5,677	543,15	9,001
553,15	4,333	553,15	4,765	553,15	5,333	553,15	6,883	553,15	10,617
563,15	4,946	563,15	5,480	563,15	6,215	563,15	8,030	563,15	12,244
573,15	5,549	573,15	6,205	573,15	7,117	573,15	9,244	573,15	13,892
583,15	6,156	583,15	6,942	583,15	8,050	583,15	10,421	583,15	15,636
593,15	6,794	593,15	7,686	593,15	8,961	593,15	11,627	593,15	17,341
603,15	7,411	603,15	8,450	603,15	9,883	603,15	12,852	603,15	19,028
613,15	8,049	613,15	9,224	613,15	10,843	613,15	14,078	613,15	20,763
623,15	8,725	623,15	10,000	623,15	11,843	623,15	15,351	623,15	22,585
462	,844	49	7,35	534	4,73	55	0,67	575,06	
373,15	0,165	373,15	0,170	373,15	0,175	423,15	0,587	443,15	14,488
383,15	0,233	383,15	0,239	383,15	0,245	428,15	0,644	453,15	18,644
393,15	0,304	393,15	0,311	393,15	0,316	429,15	0,656	463,15	22,682
403,15	0,380	403,15	0,386	403,15	0,392	429,75	0,664	473,15	26,682
413,15	0,473	413,15	0,478	413,15	0,484	431,15	1,128	483,15	30,582
423,15	0,569	423,15	0,574	423,15	0,581	432,15	1,487	493,15	34,758
433,15	0,682	433,15	0,690	433,15	0,698	433,15	1,847	503,15	38,757
443,15	0,825	443,15	0,835	438,15	0,767	443,15	5,412	513,15	42,756
453,15	1,015	453,15	1,025	439,15	0,781	453,15	9,060	58	9,73
463,15	1,219	463,15	1,231	440,15	0,797	463,15	12,489	373,15	0,190
473,15	1,427	464,15	1,252	440,95	0,809	473,15	15,881	383,15	0,262
483,15	1,649	465,15	1,272	441,15	0,887	483,15	19,487	393,15	0,333
485,15	1,698	466,15	1,294	443,15	1,538	493,15	23,094	394,15	0,341
488,15	1,//3	466,15	1,294	453,15	4,687	503,15	26,427	395,15	0,348
488,15	1,//6	46/,15	1,528	463,15	/,883	513,15	30,045	395,15	0,348
489,15	1,967	4/3,15	2,948	4/3,15	11,096	523,15	33,484	396,15	0,//1
490,15	2,166	483,15	5,295	483,15	14,292	533,15	37,189	398,15	1,638
493,15	2,657	493,15	7,658	493,15	17,449	543,15	40,679	403,15	3,837
503,15	4,589	503,15	10,031	503,15	20,585	272.45	5,06	413,15	8,392
513,15	0,470	513,15	14,392	513,15	23,722	3/3,15	0,185	423,15	17,002
523,15	8,391 10,200	523,15	17.145	523,15	20,830	383,15	0,255	433,15	17,390
533,15	10,390	533,15 543.15	10 549	533,15 543.15	30,02b	393,15	0.405	443,15	21,88U
552 15	1/ 222	552 15	13,348 22.010	552 15	3C 30C	405,15	0,405	455,15	20,410
562 15	16 102	562 15	22,019	562 15	20 500	400,15	0,450	403,13	35 563
572 15	10,193	572 15	24,551	202,12	33,362 N 67	407,15	0,440	4/3,13	33,303 10 1 10
502 15	20.004	502 15	20,724	272 15	0,07	400,45	0,452	403,13	40,140
503,15	20,094	202,22	29,094	575,15	0,100	409,13	0,767		
555,55	22 051	502 15	21 702	282 15	0 252	410 15	1 1 7 2		
603 15	22,054	593,15 603 15	31,703 34 094	383,15	0,252	410,15	1,128 2 308		
603,15 613 15	22,054 24,069 26,092	593,15 603,15 613 15	31,703 34,094 36 526	383,15 393,15 403 15	0,252 0,322 0 398	410,15 413,15 423 15	1,128 2,308 6 245		

Рис. 2.1 Изохоры 26.0-590.6 кг/м³ (1-21) зависимости давления от температуры смеси н-пропанол–н-гептан состава x=0.8 мол.доли.

Рис.2.2 Изохоры 26.0-590.6 кг/м³ (1-21) зависимости давления от температуры смеси н-пропанол–н-гептан состава х=0.8 мол.доли. ЖФ–жидкая фаза, СКЖ– сверхкритическая жидкость, ПФ–паровая фаза, СКП–сверхкритический пар, КТ–критическая точка.

Таблица 2.2. Значения параметров точек ФП и КС (жирным шрифтом).

-	1	1	
	Т (К)	р (МПа)	ρ(кг/м³)
	395,15	0,35	590,63

408,45	0,45	576,02
429,75	0,66	551,46
440,95	0,83	535,47
463,15	1,23	506,23
487,85	1,79	463,11
497,15	2,02	448,49
517,55	2,60	390,79
523,15	2,82	352,53
526,15	2,92	320,02
527,15	2,95	287,85
527,65	2,95	256,13
528,15	2,95	237,38
528,15	2,95	222,58
527,35	2,90	199,48
525,15	2,73	159,34
520,65	2,54	132,35
515,15	2,31	107,35
502,15	1,88	73,50
478,15	1,22	38,50
158 15	0 83	26.02

Рис.2.4 Зависимость плотности от температуры вдоль кривой сосуществования фаз.

Рис.2.5 Зависимость давления от температуры вдоль кривой сосуществования фаз.

Экспериментальная зависимость давления от температуры, плотности и состава смесей на линии насыщения (вдоль кривой сосуществования фаз) описывает трехпараметрическое полиномиальное уравнение состояния – разложение фактора сжимаемости по степеням приведенной плотности $\Box = \rho/\rho_{\kappa}$, приведенной температуры $\Box = T/T_{\kappa}$ во всем диапазоне значений состава x [12]:

$$Z = p / RT \rho_m = 1 + \sum_{i=1}^{m} \sum_{j=0}^{n} \sum_{k=0}^{s} a_{ijk} \omega^i \cdot x^k / \tau^j , \qquad (1)$$

откуда
$$p = RT \rho_m \left[1 + \sum_{i=1}^m \sum_{j=0}^n \sum_{k=0}^s a_{ijk} \omega^i \cdot x^k / \tau^j \right]$$
 (2)

В (2): ρ_m-молярная плотность (моль/м³); *х*-концентрация углеводорода (мольные доли); *R*=8,314 – универсальная (молярная) газовая постоянная (Дж/моль· К).

Коэффициенты уравнения (2) a_{ijk} определены обобщенным методом наименьших квадратов с выполнением критических условий:

$$\left(\partial p/\partial \rho\right)_{T}^{\kappa} = 0; \left(\partial^{2} p/\partial \rho^{2}\right)_{T}^{\kappa} = 0; \left(dp/dT\right)_{T=T_{\kappa}} = \left(\partial p/\partial T\right)_{T=T_{\kappa}, \rho=\rho, \rho}$$

Средняя относительная погрешность отклонений, рассчитанных по (2) значений давления от экспериментальных не превышает 1.2 %.

Как известно, температурную зависимость плотности жидкостей и гомогенных жидких растворов вдоль КС-фаз и в окрестности их критической точки описывают степенные функции с нецелочисленными показателями степени – критическими показателями:

$$\mathfrak{d} = B_i \tau^{\beta_i} \tag{3}$$

Здесь $\tau = (T - T_{\kappa})/T_{\kappa}$ – приведенное отклонение температуры от критического значения T_{κ} ; $\omega = (\rho_{\kappa} - \rho_{\kappa})/\rho_{\kappa}$ и $\omega = (\rho_{\kappa} - \rho_{n})/\rho_{\kappa}$ – приведенное отклонение плотности (жидкой ρ_{κ} и паровой ρ_{n} фаз соответственно) от критического значения ρ_{κ} (параметр порядка); $\beta_{i} = \beta_{0}, \beta_{1}, \beta_{2}, ... -$ КП параметра порядка; $B_{i} = B_{0}, B_{1}, B_{2}, ... -$ коэффициенты (амплитуды).

Существует множество вариантов уравнения (3), отличающиеся выражениями для ω и числом членов разложения в его правой части, но с различными значениями β_0 (0.3–0.5) для жидких систем. Установлено, что величина критических показателей зависит от размерности пространства (*d*) и числа компонентов параметра порядка.

Для описания зависимости плотности смесей вдоль КС в интервале температур (П>0.01) и симметричной ее части (П=0-0.01) использованы уравнения, предложенные авторами работы [13]:

$$\rho_{\mathcal{M},n} = \rho_{\kappa} \Big(I \pm B_0 \tau^{\beta_0} + B_I \tau^{\beta_I} \pm B_2 \tau^{\beta_2} + \cdots \Big), \tag{4}$$

$$\left(\rho_{\mathcal{H}} - \rho_n\right) / 2\rho_{\kappa} = B_0 \tau^{\beta_0} + B_2 \tau^{\beta_2} + B_4 \tau^{\beta_4} + \cdots.$$
(5)

При обработке экспериментальных данных по уравнениям (3) и (4) величину β_i меняли в интервале 0.3–0.5, а параметр B_i использовался как подгоночный. Уравнения (4) и (5) описывают экспериментальные данные со средней погрешностью 1.2 % при β_0 =0.338 ± 0.002.

Раздел 3. Экспериментальные и теоретические исследования транспортных и термодинамических свойств флюидонасыщенных горных пород при высоких температурах и давлениях

Этап 2019г. Экспериментальные исследования эффективной теплопроводности песчаников при высоких температурах (275-523) К и давления до 400 МПа.

Реферат. Отчет состоит из 10 страниц, 7 рисунков, 3 таблиц, 10 использованных источников, 14 научных публикаций.

Ключевые слова: теплопроводность, температура, флюидонасыщение, пористость, тепловой поток

В работе представлены результаты экспериментальных исследований по влиянию гидростатического давления (Р) до 400 МПа в области температур (Т) 275-523 К на мелкозернистого, теплопроводность (λ) горных пород: среднезернистого И крупнозернистого песчаников в газо-, водо- и маслонасыщенном состояниях, которые позволили получить не только общие закономерности изменения $\lambda = f(T, P)$, но и данные об изменении теплофизических свойств конкретной горной породы в зависимости от пористости и теплопроводности насыщающего флюида. Проанализирован механизм влияния температуры и давления на эффективную теплопроводность (λ_{эф}) на основе закона λ=CTⁿ. Рассматриваются процессы распространения и рассеяния тепловых волн в песчанике с учетом степени их кристаллизации И блочности структуры. Проанализировано влияние насыщающего флюида на теплопроводность песчаника, рост которой тем больше, чем больше теплопроводность флюида.

Введение

Определение тепловых характеристик горных пород является одной из важнейших проблем геофизики. Это обусловлено широким спектром геологических, технологических, экологических и других задач, решаемых на основе изучения естественных и искусственных тепловых полей в недрах Земли. Для решения фундаментальных проблем геотермии, связанных с изучением теплопереноса И прогнозированием глубинных температур, требуются достоверные данные 0 теплопроводности пород при больших давлениях и температурах.

Оценка плотности теплового потока и распределения температур на различных глубинах непосредственно связана с величиной теплопроводности горных пород в условиях пластовых давлений и температур. Экспериментальные исследования при высоких температурах и давлениях позволяют выяснять процессы теплопереноса в многокомпонентных средах, каковыми являются горные породы, и выявлять связи распределения температур и плотности теплового потока с геотектоническим строением земной коры конкретного региона. Изучение теплофизических свойств горных пород является предметом геофизических исследований и имеет важное значение для понимания природы термодинамических И физико-химических процессов, проведения геотермальных работ, прямых поисков геотермальной разведки, а также вопросов, связанных с изучением и использованием энергетического потенциала геотермального тепла. В связи с этим, особое внимание уделяется экспериментальным исследованиям теплофизических свойств горных пород в условиях, моделирующих совместное влияние давлений и температур. Процессы теплопереноса в горных породах в модельных условиях отвечают особенностям механизма теплопередачи в таких же породах в естественной ситуации.

Работ, посвященных экспериментальным исследованиям теплопроводности горных пород при одновременном влиянии высоких температурах и давлений, в научной литературе недостаточно. В настоящее время сделать достоверный прогноз теплопереноса на больших глубинах не представляется возможным из-за большого количества факторов, влияющих на теплопроводность сложнейшей системы – горная порода. Механизм теплопереноса в твердых телах, и особенно в горных породах, зависит не только от давления и температуры, но и от минералогического состава, плотности, структуры, пористости, геометрии пор, степени кристаллизации породообразующих минералов (аморфного или кристаллического состояния), газо-, нефти-, водонасыщенности. Все эти зависимости необходимо учесть при моделировании тепловых свойств в условиях их естественного залегания.

Согласно существующим в настоящее время теориям теплопереноса в твердых телах [14-18] и экспериментальным данным температурная зависимость эффективной теплопроводности ($\lambda_{э\phi}$) описывается уравнением

$$\lambda_{a\phi} = CT^n$$
,

(1)

где n= -1 – для кристаллических соединений, у которых существует дальний порядок межатомных связей;

n= -0.5 – для кристаллических соединений с большим количеством дефектов;

0.3≤ n≤ 0.5 – для аморфных соединений, у которых отсутствует дальний порядок межатомных связей.

Из этого следует, что величина λ_{эф} горных пород и, особенно ее температурная зависимость, является чувствительным параметром к дефектам и кристаллическому состоянию породообразующих минералов [19,20].

Давление, с одной стороны, увеличивая максимальную частоту колебания атомов кристаллической решетки, приводит к изменению наклона дисперсной кривой и увеличению характеристической температуры Дебая [16], с другой – создает условия для изменения ее дислокационной структуры [21] и приводит к возникновению неравновесного возбужденного состояния границ блоков [22].

Целью настоящей работы является экспериментальное исследование поведения эффективной теплопроводности сухих и флюидонасыщенных образцов песчаника в условиях высоких гидростатических давлений до 400 МПа и температур 273-523 К и изучение процессов теплопереноса.

Экспериментальные результаты

Стационарные методы разработаны благодаря их относительной простоте. Поэтому для экспериментального исследования теплопроводности горных пород в условиях гидростатического давления до 400 МПа был применен один из вариантов плоского стационарного метода Х.И.Амирханова [23]. Схема установки описана в работах [14,15]. Измерения проводились абсолютным стационарным методом плоских пластин в камере высокого давления, где средой передающей давление служил газ аргон, касторовое масло.

Расчетная формула для вычисления теплопроводности исследуемого вещества:

$$\lambda = \frac{\mathbf{Q} - \mathbf{Q}_{\Pi \text{ o } T}}{\left(\frac{\mathbf{S}_{1}}{\mathbf{h}_{1}} \cdot \Delta \mathbf{T}_{1} + \frac{\mathbf{S}_{2}}{\mathbf{h}_{2}} \cdot \Delta \mathbf{T}_{2}\right)},$$

где Q – тепловой поток через образец; Q_{пот} – потери тепла; S₁,S₂- площади поверхностей образцов; h₁, h₂ –высота образцов; ΔT_1 , ΔT_2 – перепад температур на образцах

Экспериментально исследована от гидростатического давления до 400 МПа в области температур 275-523 К в газо-, водо- и маслонасыщенном состояниях теплопроводность образцов:

- 1. Мелкозернистого песчаника (м.р. Сухокумск, РД, скважина "Юбилейная-4В", глубина залегания 4500-4900м), открытой пористостью–7%, плотностью–2.8 · 10³кг/м³;
- 2. Среднезернистого песчаника (м.р. Акташ РД) с размерами зерен 0.4-0.5мм, открытой пористостью –12% и плотностью –2.29·10³ кг/м³.
- Крупнозернистого песчаника (м.р.Солончаковское газоконденсатное м/р РД, глубина залегания 3935-3940м.), с размерами зерен 0.5-3мм., открытой пористостью–16.2%, плотностью–2.18·10³ кг/м³.

Теплопроводность твердых тел является чувствительным параметром к наличию дефектов кристаллической решетки и описывается равенством: $\lambda(T) = CT^{-n}$, в котором знак и величина показателя степени п играют существенную роль в определении степени кристаллизации вещества:

Полученные экспериментальные результаты для газонасыщенного мелкозернистого песчаника (k=7%) представлены в таблице 3.1 и на рисунках 3.1, 3.2.

	Давление, МПа									
T,C										
	0.1	50	100	150	200	250	300	350	400	
газонасыщенный										
273	2.06	2.18	2.2	2.24	2.25	2.26	2.27	2.28	2.29	1.16
323	1.91	2.10	2.13	2.16	2.17	2.19	2.20	2.21	2.22	1.18
373	1.83	2.03	2.07	2.10	2.11	2.13	2.14	2.15	2.16	1.19
423	1.76	1.97	2.07	2.04	2.06	2.08	2.09	2.10	2.10	1.20
473	1.71	1.92	1.97	2.00	2.01	2.04	2.05	2.06	2.05	1.21

Таблица 3.1. Теплопроводность (Вт/мК) песчаника (k=7%) от температуры и давления

1.66	1.88	1.94	1.96	1.97	2.00	2.01	2.02	2.02	1.23			
0.28	0.23	0.20	0.20	0.20	0.19	0.19	0.19	0.19				
9.87	7.82	6.80	7.09	7.08	6.49	6.48	6.48	6.48				
маслонасыщенный												
2.16	2.24	2.29	2.34	2.37	2.40	2.42	2.44	2.46	1.14			
2.07	2.14	2.21	2.25	2.28	2.31	2.33	2.36	2.34	1.13			
1.99	2.06	2.13	2.19	2.21	2.24	2.26	2.29	2.31	1.16			
1.93	2.00	2.09	2.13	2.15	2.19	2.20	2.23	2.25	1.17			
1.87	1.94	2.05	2.08	2.10	2.13	2.15	2.18	2.20	1.18			
1.83	1.90	2.01	2.04	2.06	2.09	2.1 1	2.14	2.16	1.18			
0.25	0.25	0.20	0.21	0.21	0.21	0.21	0.20	0.20				
9.03	9.29				7.91	7.89	7.56	7.55				
			вод	онасыще	енный							
2.38	2.40	2.43	2.45	2.47	2.49	2.51	2.53	2.55	1.08			
2.27	2.30	2.34	2.36	2.38	2.40	2.42	2.44	2.46	1.08			
2.19	2.22	2.26	2.28	2.30	2.32	2.34	2.36	2.38	1.08			
2.12	2.15	2.19	2.21	2.23	2.25	2.27	2.29	2.31	1.09			
2.06	2.10	2.14	2.16	2.18	2.20	2.22	2.24	2.26	1.10			
2.01	2.06	2.09	2.11	2.13	2.15	2.17	2.19	2.21	1.10			
0.26	0.24	0.23	0.23	0.23	0.22	0.22	0.22	0.22				
10.23	9.35	8.92	8.89	8.86	8.84	8.81	8.79	6.48				
	$\begin{array}{c} 1.66\\ 0.28\\ 9.87\\ \hline \\ 2.16\\ 2.07\\ \hline \\ 1.99\\ \hline \\ 1.93\\ \hline \\ 1.83\\ 0.25\\ 9.03\\ \hline \\ 2.38\\ 2.27\\ \hline \\ 2.19\\ 2.12\\ 2.06\\ \hline \\ 2.01\\ \hline \\ 0.26\\ \hline \\ 10.23\\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.661.881.941.961.970.280.230.200.200.209.877.826.807.097.08маслонасыщ2.162.242.292.342.372.072.142.212.252.281.992.062.132.192.211.932.002.092.132.151.871.942.052.082.101.831.902.012.042.060.250.250.200.210.219.039.29водонасыще2.382.402.432.452.472.272.302.342.362.382.192.222.262.282.302.122.152.192.212.232.062.102.142.162.182.012.062.092.112.130.260.240.230.230.2310.239.358.928.898.86	1.66 1.88 1.94 1.96 1.97 2.00 0.28 0.23 0.20 0.20 0.20 0.19 9.87 7.82 6.80 7.09 7.08 6.49 <i>маслонасыщенный</i> 2.16 2.24 2.29 2.34 2.37 2.40 2.07 2.14 2.21 2.25 2.28 2.31 1.99 2.06 2.13 2.19 2.21 2.24 1.93 2.00 2.09 2.13 2.15 2.19 1.87 1.94 2.05 2.08 2.10 2.13 1.83 1.90 2.01 2.04 2.06 2.09 0.25 0.25 0.20 0.21 0.21 0.21 9.03 9.29 7.91 водонасыщенный 2.38 2.40 2.43 2.45 2.47 2.49 2.27 2.30 2.34 2.36 2.38 2.40 2.19 2.22 2.26 2.28 2.30 2.32 2.12 2.15 2.19 2.21 2.23 2.25 2.06 2.10 2.14 2.16 2.18 2.20 2.01 2.06 2.09 2.11 2.13 2.15 0.26 0.24 0.23 0.23 0.23 0.22 10.23 9.35 8.92 8.89 8.86 8.84	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.661.881.941.961.972.002.012.020.280.230.200.200.200.190.190.190.199.877.826.807.097.086.496.486.48 <i>маслонасыщенный</i> 2.162.242.292.342.372.402.422.442.072.142.212.252.282.312.332.361.992.062.132.192.212.242.262.291.932.002.092.132.152.192.202.231.871.942.052.082.102.132.152.181.831.902.012.042.062.092.112.140.250.250.200.210.210.210.209.039.29 <i>водонасыщенный</i> 2.382.402.432.452.472.492.512.532.272.302.342.362.382.402.422.442.192.222.262.282.302.322.342.362.122.152.192.212.232.252.272.292.062.102.142.162.182.202.222.242.012.062.092.112.132.152.172.190.260.240.230.230.230.220.220.22 </td <td>1.66$1.88$$1.94$$1.96$$1.97$$2.00$$2.01$$2.02$$2.02$$0.28$$0.23$$0.20$$0.20$$0.19$$0.19$$0.19$$0.19$$0.19$$9.87$$7.82$$6.80$$7.09$$7.08$$6.49$$6.48$$6.48$$6.48$<i>маслонасыщенныймаслонасыщенный</i>$2.16$$2.24$$2.29$$2.34$$2.37$$2.40$$2.42$$2.44$$2.46$$2.07$$2.14$$2.21$$2.25$$2.28$$2.31$$2.33$$2.36$$2.34$$1.99$$2.06$$2.13$$2.19$$2.21$$2.24$$2.26$$2.29$$2.31$$1.93$$2.00$$2.09$$2.13$$2.15$$2.19$$2.20$$2.23$$2.25$$1.87$$1.94$$2.05$$2.08$$2.10$$2.13$$2.15$$2.18$$2.20$$1.83$$1.90$$2.01$$2.04$$2.06$$2.09$$2.11$$2.14$$2.16$$0.25$$0.25$$0.20$$0.21$$0.21$$0.21$$0.20$$0.20$$9.03$$9.29$$7.91$$7.89$$7.56$$7.55$содонасыщенный$2.38$$2.40$$2.43$$2.45$$2.47$$2.49$$2.51$$2.53$$2.55$$2.27$$2.30$$2.34$$2.36$$2.38$$2.40$$2.42$$2.44$$2.46$$2.19$$2.22$$2.26$$2.28$$2.30$$2.3$</td>	1.66 1.88 1.94 1.96 1.97 2.00 2.01 2.02 2.02 0.28 0.23 0.20 0.20 0.19 0.19 0.19 0.19 0.19 9.87 7.82 6.80 7.09 7.08 6.49 6.48 6.48 6.48 <i>маслонасыщенныймаслонасыщенный</i> 2.16 2.24 2.29 2.34 2.37 2.40 2.42 2.44 2.46 2.07 2.14 2.21 2.25 2.28 2.31 2.33 2.36 2.34 1.99 2.06 2.13 2.19 2.21 2.24 2.26 2.29 2.31 1.93 2.00 2.09 2.13 2.15 2.19 2.20 2.23 2.25 1.87 1.94 2.05 2.08 2.10 2.13 2.15 2.18 2.20 1.83 1.90 2.01 2.04 2.06 2.09 2.11 2.14 2.16 0.25 0.25 0.20 0.21 0.21 0.21 0.20 0.20 9.03 9.29 7.91 7.89 7.56 7.55 содонасыщенный 2.38 2.40 2.43 2.45 2.47 2.49 2.51 2.53 2.55 2.27 2.30 2.34 2.36 2.38 2.40 2.42 2.44 2.46 2.19 2.22 2.26 2.28 2.30 2.3			

Рис.3.1. Зависимость теплопроводности мелкозернистого песчаника от температуры при различных давлениях (газонасыщенный, k=7%)

Температурная зависимость теплопроводности газонасыщенного мелкозернистого песчаника (k=7%) при атмосферном давлении описывается равенством $\lambda = CT^{-0.28}$. Значение показателя п указывает на наличие в данном образце кварцевых соединений с разной степенью кристаллизации, что приводит к разным механизмам теплопереноса (волновому и активационному).

Рис.3.2. Зависимость теплопроводности мелкозернистого песчаника от давления при различных температурах (газонасыщенный, k=7%)

Результаты эксперимента показывают, что давление ослабляет характер температурной зависимости теплопроводности исследованных песчаников. Так, если при атмосферном давлении показатель степени n = 0.28, то при P = 400 МПа его значение уменьшается до n = 0.19.

Гидростатическое давление до 400 МПа приводит к росту теплопроводности газонасыщенного песчаника на 16%. Наиболее интенсивный рост теплопроводности 11% в начальной стадии давления до 100 МПа. При этом, если температурная зависимость теплопроводности при атмосферном давлении описывается зависимостью $\lambda \sim T^{-n}$, n = 0.28, то при P = 100 МПа n = 0.19 (табл.3.1). Общий рост теплопроводности под давлением до 400 МПа маслонасыщенных образцов песчаника составляет 13%, из которых 6% приходится на начальную область до 100 МПа.

Насыщение флюидами образцов песчаника приводит к увеличению начального значения теплопроводности. Для водонасыщенных образцов песчаника теплопроводность до 400 МПа монотонно растет и составляет 11–15%, насыщение маслом увеличивает $\lambda_{3\phi}$ на 5–7%. Полученные экспериментальные данные показывают, что влагонасыщение приводит к ослаблению $\lambda(T)$ образцов песчаника.

Полученные экспериментальные результаты для газонасыщенного среднезернистого песчаника (k=12%) представлены в таблице 3.2 и на рисунках 3.3-3.5.

Т,К		Давление,МПа							
	0,1	20	50	100	150	200	250	λ_p/λ_o	
273	2,24	2,91	3,12	3,34	3,39	3,4	3,41	1,52	
323	2,4	2,99	3,18	3,37	3,42	3,43	3,44	1,43	
373	2,56	3,06	3,23	3,39	3,45	3,46	3,47	1,33	
423	2,7	3,12	3,27	3,42	3,47	3,48	3,49	1,29	
473	2,83	3,18	3,32	3,44	3,49	3,5	3,51	1,24	

Таблица 3.2. Теплопроводность (Вт/мК) среднезернистого песчаника (k=12%) от давления и температуры (газонасыщенный).

523	2,96	3,24	3,36	3,46	3,52	3,53	3,54	1,19
n	0,428	0,165	0,113	0,054	0,057	0,057	0,057	
С	0,2022	1,1517	1,646	2,463	2,4501	2,4596	2,4691	

Рис.3.3. Зависимость теплопроводности среднезернистого песчаника от температуры при различных давлениях (газонасыщенный, 12%)

Рис.3.4. График зависимости показателя степени «n» от давления для газонасыщенного среднезернистого песчаника пористостью 16.2%

Для среднезернистого песчаника (k=12%) температурная зависимость теплопроводности при атмосферном давлении описывается равенством λ =CT^{0.4}. Полученное низкое значение n=0.43 говорит о том, что в данной горной породе тепловые волны испытывают сильное дополнительное сопротивление на дефектах и структурных неоднородностях (табл.3.2). В данной горной породе тепловые волны испытывают сильное сопротивление на дефектах и структурных неоднородностях.

Рис.3.5. Зависимость теплопроводности крупнозернистого песчаника от давления при различных температурах (газонасыщенный, 12%)

Полученные экспериментальные результаты для газонасыщенного крупнозернистого песчаника (k=16.2%) представлены в таблице 3.3 и на рисунках 3.6, 3.7.

Таблица 3.3. Зависимость теп	ілопроводности (Вт/мК) крупнозернистого	песчаника от
давления и температур	оы (K=16.2%).		

Т,К	Давление, МПа							2 / 2
	0,1	20	50	100	150	200	250	$n_{250}/n_{0,1}$
273	2,42	2,61	2,81	2,92	2,94	2,98	3,05	1,26
323	2,54	2,73	2,9	3,01	3,04	3,08	3,13	1,23
373	2,65	2,84	2,99	3,1	3,13	3,17	3,21	1,21
423	2,75	2,94	3,06	3,17	3,21	3,25	3,28	1,19
473	2,84	3,03	3,13	3,24	3,28	3,32	3,35	1,17
523	2,93	3,12	3,2	3,31	3,35	3,39	3,41	1,16
n	0,294	0,274	0,199	0,192	0,208	0,198	0,171	
С	0,4647	0,5595	0,9195	0,9899	0,953	0,9798	1,1646	
$\lambda_{523}/\lambda_{275}$	1,21	1,20	1,14	1,14	1,14	1,14	1,11	

Рис.3.6. Зависимость теплопроводности крупнозернистого песчаника (Вт/мК) от температуры при различных давлениях

Рис.3.7. Зависимость теплопроводности крупнозернистого песчаника (Вт/мК) от давления при различных температурах

При действии давления наблюдается нелинейный рост эффективной теплопроводности: более сильный до 100 МПа и далее плавный переход на насыщение. Давление также влияет и на температурную зависимость теплопроводности.

С одной стороны такое поведение можно объяснить возникновением под давлением дополнительного рассеяния тепловых волн.

Но некоторые авторы объясняют наблюдаемый интенсивный рост теплопроводности горных пород при давлениях до 100 МПа процессами захлопывания микропор, трещин и уплотнением блоков. Если исходить из данного объяснения, то при снижении давления должен наблюдаться гистерезис. Однако, наши экспериментальные значения теплопроводности, полученные при подъеме и спуске давления, воспроизводились в пределах ошибки измерения и гистерезиса не наблюдалось. Поэтому мы объясняем данный эффект тем, что в пористых горных породах происходит упругопластическая деформация межзеренного пространства.

Насыщение флюидами образцов песчаника с пористостью 16.2% ввиду большой пористости насыщение водой увеличивает его теплопроводность в 3,5 раза, а маслом – в 2,5 раза, при этом характер температурной зависимости почти не меняется.

Сравнение температурной и барической зависимости этих песчаников позволило предположить, что зависимость теплопроводности от давления и температуры можно описать уравнением: λ (PT)=C(P)T^{-n± α P}, где α =n/P – барический коэффициент.

Выводы

В результате проведенных экспериментальных исследований по влиянию гидростатического давления до 400 МПа, температуры в интервале 273-523К и флюидонасыщения на эффективную теплопроводность песчаников получены следующие результаты:

- 1. Впервые показано, что температурная зависимость эффективной теплопроводности существенно зависит от кристаллического состояния породообразующих минералов, а начальная величина $\lambda_{9\phi}$ и знак показателя n в законе $\lambda_{9\phi} = CT^n$ могут быть использованы для определения степени кристаллизации породообразующих минералов.
- 2. Хотя теоретически давление должно приводить к линейному росту теплопроводности горных пород и модельных сред, однако, полученные нами экспериментальные данные, а также результаты других авторов показывают, что в блочных структурах теплопроводность от давления увеличивается в основном до Р≈100 МПа, а далее ее рост значительно ослабляется и переходит на насыщение.
- Поскольку в барической зависимости теплопроводности отсутствует гистерезис, то поведение теплопроводности в области Р до 100 МПа указывает на то, что под давлением в блочных структурах возникают процессы дополнительного рассеяния тепловых волн.
- 4. На основании полученных экспериментальных данных нами предложено равенство, описывающее одновременное влияние температуры и давления на эффективную теплопроводность горных пород

$$\lambda_{a\Phi}(PT) = C(P)T^{-n\pm\alpha(P)},$$

где $\alpha = dn/dP - барический коэффициент.$

5. Проанализировано влияние насыщающего флюида на теплопроводность горных пород, рост которой тем больше, чем больше теплопроводность флюида.

Раздел 4. Моделирование теплофизических свойств рабочих агентов энерговырабатывающих систем

Этап 2019. Разработка физически обоснованных термических уравнений состояния. Методика выбора оптимальных уравнений и их апробация

Реферат. Отчет 7 с., 4 таблицы, 26 источников

Ключевые слова: моделирование, теплофизические свойства, малопараметрические уравнения состояния, модель взаимодействующих точечных центров, управляющие параметры, методика выбора оптимальных уравнений, смягченный отталкивательный вклад, ус ван-дер-ваальсового типа, критический коэффициент

Представлены новые результаты, полученные в области моделирования теплофизических свойств технически важных веществ.

Объект исследования - разрабатываемая молекулярно-термодинамическая модель: малопараметрические уравнения состояния (УС) на основе молекулярной модели взаимодействующих точечных центров (ВТЦ).

С этой проблемой тесно связана задача выбора оптимальных УС. В связи с этим особое значение приобретает возможность сравнения УС на основе связанных с молекулярным уровнем критериев. В модели ВТЦ впервые выделен ряд формирующих УС управляющих параметров, в которых отражено соотношение действующих сил притяжения и отталкивания.

Новые возможности при исследовании УС вдв-типа появляются после включения их в рамки новой модели. Проведен анализ известных двучленных УС с модифицированным первым вкладом. Выделены конфигурационные вклады, определенные отталкиванием ТЦ и проведено их сравнение. Показано, что известное УС Ишикавы, Чанга, Лу не может рассматриваться как общее уравнение, т.к. отвечает одному конкретному соотношению этих управляющих параметров.

Результаты, полученные для двух предельных УС ВТЦ, применены при разработке методики выбора параметров общего оптимального УС ВТЦ. Методика апробирована расчетом критической изотермы аргона. Проведены модельные расчеты для нескольких наборов пар управляющих параметров. Точность расчета для интервала значений приведенного объема от 100 до 0.7 составила в двух случаях соответственно: 1.13% и 0.97% – среднее абсолютное отклонение.

Отмечена возможность оптимизации методики при переходе к структурированным более общим вариантам параметров УС. Установлена связь (в виде аналитической формулы) критического коэффициента (величина, обратная критическому фактору сжимаемости Z_C) с проявлением сил притяжения и отталкивания точечных центров.

Полученные результаты продвигают при решении трех составляющих большой проблемы - разработке новых, совершенствовании известных и выбору оптимальных уравнений состояния.

Большая часть полученных результатов представлена в виде статей и докладов.

Введение

Малопараметрические (число параметров от 2 до 5) термические уравнения состояния (УС) по-прежнему представляют интерес. Большую часть подобных УС составляют кубические уравнения, которые по-прежнему востребованы в расчетах благодаря простоте и экономичности. При этом именно простота формы дает надежду получить физически обоснованное УС, форма вкладов и смысл параметров которого связаны с молекулярным уровнем, т.е. модель, обладающую прогностической ценностью.

Нами разрабатывается простая молекулярно-термодинамическая модель – малопараметрические уравнения состояния (УС) на основе простейшей молекулярной модели взаимодействующих точечных центров (ВТЦ). В отчетном году усилия были сосредоточены на проблеме выбора оптимальных УС. Очевидно, что выбор требует сравнения, основанного на определенных критериях, которые позволили бы оценить качества самих УС. Применяемый обычно способ – сравнение с экспериментальными данными либо с результатами расчетов по наиболее признанным УС. Такой подход не позволяет дать ответа на вопрос, но это оказывается возможно в рамках новой модели.

В 2018 году исполнилось 145 лет уравнению состояния (УС) Ван-дер-Ваальса, ставшему родоначальником мощного направления исследований в теплофизике. Примером являются работы, относящиеся к системам, важность которых в настоящее время невозможно переоценить – к природным углеводородам [24]. Основным методом математического моделирования фазового равновесия подобных сложных систем с середины 70-х годов прошлого века стал метод единых УС [25,26]. Значительную роль в его развитии сыграло УС Редлиха-Квонга [27], возродившее деятельный интерес к УС Ван-дер-Ваальса. Результатом стало появление большого числа модификаций (при исследовании углеводородов самым успешным стало УС Пенга-Робинсона.), которые теперь называют УС вдв-типа. Все эти УС считаются независимыми и любое из них предлагалось в свое время как общее уравнение. Разрабатываемая нами модель позволяет выделить управляющие параметры двух уровней – термодинамического и молекулярного – и ранжировать известные УС по ряду параметров, связанных с проявлением сил, действующих между объектами системы.

Знаменитое УС ВДВ имеет вид (для одного моля, обозначения стандартные):

$$P = \frac{RT}{V - b} - \frac{a}{V^2} \tag{1}$$

Ван-дер-Ваальс ставил целью учесть, что у молекул – жестких сфер есть собственный объем (первый вклад в (1)) и между ними существует слабое притяжение ((второй вклад). Множество УС получены при попытках совершенствования УС (1).

Совершенствование уравнений в основном предполагает два пути. Первый заключен в модификации второго вклада УС (1). Этому пути следует множество авторов (см. обзоры УС в [24-29]). Самым известным является УС Редлиха-Квонга

$$P = \frac{RT}{V - b} - \frac{a}{T^{0.5}V(V + b)}$$
(2)

Задачу модификации первого вклада УС (1) и (2), решает гораздо меньшее число исследователей. В целях проводимого анализа важно подчеркнуть, что первый вклад в (1) представляет так называемое УС с коволюмом и оно было получено до Ван-дер-Ваальса. Оно учитывает, что у объектов, образующих систему, имеется собственный объем и представляет эмпирическое УС невзаимодействующих жестких сфер. Уже здесь мы сталкиваемся с когнитивной проблемой, поскольку давно общепринято считать, что первый вклад связан с отталкиванием жестких сфер. Напомним, что УС Карнахана-Старлинга принято называть моделью возмущенных сфер.

Малопараметрические УС – вдв-типа, УС ВТЦ и переходы между ними. Управляющий параметр – основа для сравнения

Предложены сотни модификаций УС (1) и (2). Их определяют как УС вдв-типа. Уравнения не связаны друг с другом, проблема выбора оптимального среди них не решена. Эти проблемы частично можно решить при включении УС вдв-типа в рамки другой модели – взаимодействующих точечных центров - ВТЦ.

На основе молекулярной модели ВТЦ (молекула моделируется материальной точкой, отталкивание ТЦ жесткое, притяжение оптимизировано) было получено [31] трехчленное трехпараметрическое УС (в стандартных обозначениях для одного моля):

$$P = \frac{RT}{V} + \frac{RTb}{V(V-b)} - \frac{a}{V(V+c)}$$
(3)

Первый вклад – УС невзаимодействующих точечных центров, два остальные – конфигурационные, определяемые силами отталкивания и притяжения ТЦ. Все три параметра *b*, *c*, *a* имеют смысл. Два из них равны изменениям доступного для ТЦ объема, вызванным действием притяжения и жесткого отталкивания соответственно: $c=-\Delta V_f(attr)$, $b=\Delta V_f(rep)$, третий параметр *a* связан с *c*. Подобие смысла двух параметров УС позволило ввести фактор, сравнивающий проявления сил притяжения и отталкивания: $\chi = c/b$

Для случая, когда параметры *c*, *b* – постоянные и, следовательно, $\chi = const$, получены выражения для всех параметров приведенного УС [32] в виде явных функций от χ :

$$\beta = \frac{1}{\chi} \left(\sqrt[3]{(1+\chi)} - 1 \right), \ \sigma = \left(\sqrt[3]{(1+\chi)} - 1 \right), \ Z_C = \frac{\chi}{\sqrt[3]{(\chi+1)}(\chi-1) + 2\chi + 1}$$
(4)

В результате трехпараметрическое УС ВТЦ (3) превращается в однопараметрическое семейство УС ВТЦ

$$P_{R} = \frac{1}{Z_{c}(\chi)} \left[\frac{\tau}{V_{R}} + \frac{\tau \beta(\chi)}{V_{R}(V_{R} - \beta(\chi))} - \frac{\alpha(\chi)}{V_{R}(V_{R} + \chi\beta(\chi))} \right]$$
(5)

Это впервые позволяет сравнивать УС семейства по значению одного параметра χ -, в котором проявляется соотношение сил притяжения и отталкивания между ТЦ.

Два «предельных» УС

В ходе исследований модели ВТЦ был получен кластер УС, отличающихся тем, как соотносятся проявления притяжения и отталкивания.

Основным было допущение равнозначности пары жестко отталкивающихся ТЦ паре невзаимодействующих жестких сфер, что записывалось в виде переходов между соответствующими УС: от невзаимодействующих сфер к ТЦ с жестким отталкиванием [31]

$$\frac{RT}{V-b} = \frac{RT}{V} + \frac{RTb}{V(V-b)}$$
(6)

Рассматривались два предельных (граничных) варианта соотношения сил взаимодействия. **Первое предельное УС** - жесткое отталкивание ТЦ и оптимизированное по сравнению с УС ВДВ притяжение (снято условие слабости). Полученное на его основе однопараметрическое семейство включает множество УС с реалистическими значениями КФС (именно благодаря этому первый случай УС оказался наиболее исследованным).

УС ВДВ как предельный случай в модели ВТЦ имеет вид

$$P = \frac{RT}{V} + \frac{RTb}{V(V-b)} - \frac{a}{V(V+0)}$$

В этих УС характер отталкивания – жесткий, что требует оптимизации. В рассматриваемой модели ВТЦ этому должна отвечать модификация отталкивательного конфигурационного вклада в УС. Предположительно, он будет иметь вид RTd/V(V-b).

Поэтому второе предельное УС: смягченное отталкивание и слабое (как у ВДВ притяжение). Это УС логично назвать обобщенным УС ВДВ:

$$P = \frac{RT}{V} + \frac{RTd}{V(V-b)} - \frac{a}{V(V+0)}$$
(7)

В результате общее УС, включающее оба предельных случая, в основе которого заложены «реалистичное» отталкивание и притяжение, будет иметь вид

(8)

$$P = \frac{RT}{V} + \frac{RTd}{V(V-b)} - \frac{a}{V(V+c)}$$

В этом случае отталкивание смягчено, параметр b заменен на d>b.

О включении в модель ВТЦ УС вдв-типа

В первую очередь удалось подключить к анализу двучленные УС, в том числе УС вдв-типа, в которых первый вклад - RT/(V-b). Здесь приходится делать выбор относительно его смысла. Либо он учитывает отталкивание сфер, как принято считать, и это ведет к большому ряду вопросов (см. наши работы на сайте <u>www.csmos.ru</u>), ответы на которые не даны до сих пор. Либо этот вклад распадается на два (как в (6)) и это отвечает переходу к модели ВТЦ с возможностью получить ответы на эти вопросы [31-43].

Не меньший интерес представляет анализ в рамках новой модели попыток усовершенствовать форму первого вклада УС ВдВ, УС Редлиха--Квонга и других.

Сравнение отталкивательных вкладов различных УС

Выше было упомянуто УС Карнахана – Старлинга в качестве попытки усовершенствования вклада RT/(V-b). Кубическое уравнение (9), теоретически обоснованное (отвечающее модели возмущенных жестких сфер) имеет вид

$$P = \frac{RT}{V} \frac{1 + \eta + \eta^2 - \eta^3}{(1 - \eta)^3} , \qquad \eta = \frac{b}{4V}$$
(9)

Добавив к УС (9) притягивательные «хвосты» от УС ВДВ и Редлиха-Квонга, авторы получили две модификации УС (1) и (2). Однако существенного улучшения не случилось, а УС перестало быть кубическим и, следовательно, потеряло простоту. Поэтому попытки улучшить первый вклад УС были продолжены.

В работе Ишикавы, Чанга, Лу [44] было предложено двухпараметрическое УС, в отличие от упомянутых вариаций на основе (9), кубическое и более простое по форме

$$P = \frac{RT}{V} \frac{2V+b}{2V-b} - \frac{a(T)}{V(V+b)}$$
(10)

Здесь а =0.467123 $R^2 T_c^{2.5} / P_c$, b=0.108762 $R T_c / P_c$, z_c=0.3152. УС (10) было применено к расчету свойств 22 веществ и оказалось лучше УС Пенга –Робинсона.

Зададим вопрос - может ли сравнение отдельных первых вкладов (приписываемых отталкиванию сфер) различных УС, когда те записаны в обычном виде, сказать что либо об отталкивании объектов системы? Ведь при корректном подходе первый вклад УС ВДВ и Р-Кв только учитывает наличие собственного объема у «молекул».

В то же время сравнение отталкивательных вкладов оказывается возможно.

Сравним первые вклады всех названных выше УС. С этой целью преобразуем их и получим для УС (1) ВДВ и УС (10) ИЧЛ соответственно:

$$\frac{RT}{V-b} = \frac{RT}{V} (1 + \frac{b/V}{1 - b/V}) = \frac{RT}{V} \left(1 + \frac{4\eta}{1 - 4\eta}\right) = \frac{RT}{V} (1 + \Delta_w)$$
$$\frac{RT}{V} \frac{2V + b}{2V - b} = \frac{RT}{V} (1 + \frac{b/V}{1 - b/2V}) = \frac{RT}{V} \left(1 + \frac{4\eta}{1 - 2\eta}\right) = \frac{RT}{V} (1 + \Delta_I)$$

Для УС (9) К-Ст получаем (в числителе выделили полный куб разности, добавив и отняв определенные члены)

$$\frac{RT}{V}\left(1 + \frac{2\eta(2-\eta)}{(1-\eta)^3}\right) = \frac{RT}{V}\left(1 + \frac{4\eta}{(1-\eta)^3} - \frac{2\eta^2}{(1-\eta)^3}\right) = \frac{RT}{V}\left(1 + \Delta_{KS}\right)$$

Дополним ряд кубическим УС, полученным А.Б. Каплуном и А.Б.Мешалкиным [45]:

$$P = \frac{RT}{V} (1 + \frac{d}{(V-b)}) - \frac{a}{V^2}$$
(11)

Этими авторами для ряда технически важных веществ по их свойствам было найдено, что отношения параметров d/b лежат в интервале 1.8 (метан) - 3.3 (двуокись углерода). Заметим, что физического смысла нового параметра d авторы не нашли. Ситуация с этим УС оказалась полностью аналогична ситуации с другим уравнением [46], в котором появляется третий параметр с. В то же время благодаря системному подходу мы нашли как прямую связь УС (11) с моделью ВТЦ, так и смысл введенного там параметра d. (Немногим ранее [8] был найден смысл третьего параметра с.

Теперь очевидно, что УС (11) есть частный предельный случай общего УС ВТЦ (8), а параметр d есть «смягченный» параметр b, т.е. это изменение доступного для ТЦ объема, вызванного не жестким, но «смягченным» реалистичным отталкиванием.

Примененная выше запись первых вкладов отвечает переходу от жестких сфер к модели ВТЦ. И тогда в формулах явно выделен конфигурационный вклад, определяемый проявлением отталкивания объектов. Результаты расчетов представлены в табл. 4.1. Таблица 4.1

$\Delta = b/4V = \theta$	$\Delta_{\rm KS}$	$\Delta_{\rm I}$	$\Delta_{\rm W}(b)$	$\Delta_{\rm W}({\rm b}/2)$	$\Delta_{ ext{K-M}}$
0.02			0.0204		
0.05		0.22	0.25		0.5
0.1	0.521=0.549 -0.028	0.5	0.666	0.25	1.33
0.15	0.904= 0.977-0.073	0.857	1.5	0.4285	3
0.2	1.40	1.33	4	0.66	
0.22	1.854-0.204=1.65	1.57	7.33	0.785	
0.3	2.97	3	< 0	1.5	
0.4	5.925=7.407-1.48	8	<0	4	
0.5	12	2/(1-1)	-1	1/(1-1)	

Из сравнения следует, что значения Δ_x довольно близки для УС (9) Карнахана и УС (10) Ишикавы. Что касается стандартного первого вклада в УС ВдВ и Р-Квонга, и многих УС вдв-типа, то при том же значении параметра *b*, что и в других выражениях, он сильно отличается от них по величине. (Это обстоятельство было отмечено Праузницем [47] следующим образом – если заменить значение *b* в УС Р-Кв на величину вдвое меньшую, то наблюдается качественное согласие с УС Карнахана. По виду оригинальных УС этого сказать нельзя, но из примененного нами представления УС такое согласие действительно следует, а также следует, что для УС ВДВ с b/2 конфигурационный вклад $\Delta_W(b/2)$ ровно вдвое меньше, чем для УС Ишикавы.

Что касается УС (11) Каплуна, которое есть частный случай общего УС ВТЦ, то в той же таблице 3 приведены результаты расчета для одного из возможных значений d/b=2.

Методика выбора УС ВТЦ в однопараметрическом семействе уравнений и ее апробация были подробно рассмотрены в предыдущем отчете. Поэтому здесь мы их применяем, но не описываем.

Проблема выбора оптимального УС – сравнение УС

Стандартно сравнивают результаты расчетов по разным УС. Мы проделали такую работу для аргона для двух «предельных» УС ВТЦ. Обратимся теперь к общему УС

$$P = \frac{RT}{V} + \frac{RTd}{V(V-b)} - \frac{a}{V(V+c)}$$

Представим, что оба конфигурационных вклада сохраняют полное подобие формы. $P = \frac{RT}{RT} + \frac{RTd}{RTa} - \frac{RTa}{RTa}$

$$\overline{V}^{+}\overline{V(V-b)}^{-}\overline{V(V+c)}$$

Введем обозначения c/b= χ_0 , d/b= χ_1 . Учтем, что они являются управляющими параметрами для двух «предельных» по характеру взаимодействия УС. Представим УС (12) как кубическое по объему V, что даст уравнение для параметра

$$\beta^{3}(\chi_{0} + (\chi_{0} - 1)f) + 3f\beta^{2} + 3\beta - 1 = 0$$

$$f(\chi_{0}, \chi_{1}) = \chi_{1}(\chi_{0} + 1) - 1$$
(13)

Найденное значение параметра β определит значение критического коэффициента К (χ₀), т.е. величины обратной КФС, которую мы используем наравне с ним,

$$K_{c} = 3 + (\chi_{0} - 1)\beta \quad K_{c} = 3 + \sigma - \beta$$

$$\alpha = \frac{Z_{c}}{\beta} - \beta \chi_{0}(\chi_{1} - 1)$$
(14)

Рассмотрим несколько частных случаев общего уравнения (12), $\chi_0 = 0$ (очень слабое притяжение), $\chi_1 = 1$ (жесткое отталкивание), f=0.

 $3\beta - 1 = 0$, $\beta = 1/3$, $\sigma = 0$, $K_c = 8./3$, ZC = 3/8, $\alpha = 9/8$.

Набор параметров формирует УС ВДВ.

Рассмотрим выражение для критического коэффициента К_С. Из (14) следует его связь с силами ММВ, что представляет несомненный интерес. Он тем больше, чем сильнее проявляет себя притяжение. Если эти проявления уравновешены, то К=3 (КФС =1/3) и это состояние, которое описывает УС Редлиха-Квонга. Тогда (14) можно обобщить

$$K_{c}^{\delta \tilde{N}} = Kc^{R-K_{W}} + \sigma - \beta$$

Апробация общего УС

Для того чтобы общее УС ВТЦ (12) «заработало», в описанном варианте нам необходимо знать два числа, в которых аккумулированы соотношения действующих сил. УС (10) Ишикавы, Чанга, Лу

Преобразуем оригинальное УС, записав его в виде (15) УС ВТЦ:

$$P = \frac{RT}{V} + \frac{RTb}{V(V - b/2)} - \frac{a}{V(V + b)}$$
(15)

Переопределим параметры УС (15) и найдем относительные параметры

b:=b/2, d:=b, c:=b, χ_0 =c/b=b/(b/2)=2, χ_1 =d/b=2

Об этом УС можно сказать, что силы отталкивания здесь смягчены, согласно значению χ₁=2. А притягивательный вклад отличается от того же в УС Р-Квонга, т.к. χ₀=2. По параметрам УС (15) было построено УС критической изотермы аргона

$$P_{R} = \frac{1}{0.2912V_{R}} \left[1 + \frac{0.373752}{V_{R} - 0.186876} - \frac{1.60413}{V_{R} + 0.373752} \right]$$

Это УС для аргона оказалось вполне работоспособным. В то же время можно сделать предварительный вывод: УС, предложенное Ишикавой, Чангом, Лу в [44], не может рассматриваться в качестве общего УС. Оно описывает только такие состояния, которые формируются вполне определенными конкретными соотношениями сил.

Общее УС ВТЦ

Обратимся к предложенному нами общему УС ВТЦ. Рассмотрим УС для аргона.

«Обоснованные» и независящие друг от друга значения параметров: $\chi_0=3.3$ (найдено по формуле (4) для «жесткого» УС ВТЦ) и $\chi_1=1.93$ (данные Каплуна А.Б. [46]).

1.В качестве первого шага взяли: $\chi_0=4$ и $\chi_1=2$. Это дает уравнение

31 β^3 +27 β^2 +3 β -1=0.

Решая уравнение, получили
 β =0.13728. Это дало К_C=3.41184 и Z_C=0.293. Соответствующее УС имеет вид

$$P_{R} = \frac{1}{0.291V_{R}} \left[1 + \frac{0.27456}{V_{R} - 0.13728} - \frac{1.5859}{V_{R} + 0.54912} \right]$$
(16)

Результаты расчетов представлены в табл. 2. Среднее абсолютное отклонение составило 1.13% для приведенного объема V_R от 100 до 0.7.

2. Оставили исходные значения параметров. Уравнение для параметра β:

 $20.215\beta^3 + 21.95\beta^2 + 3\beta - 1 = 0.$

Нашли β=0.1489, δ=0.287373, σ=0.492859, α=1.5522929, К_C=3.3424, Z_C=0.2991. КФС завышен по сравнению с экспериментальным. Анализ проведенных расчетов и изложенные выше соображения о связи КФС с силами взаимодействия показывают, что перейти к состоянию с меньшим значением КФС можно, уменьшив χ₁ и увеличив χ₀.

3. Были выбраны значения $\chi_1 = 1.7$ и $\chi_0 = 4$:

 $26.5\beta^3 + 22.5\beta^2 + 3\beta - 1 = 0.$

β=0.146, δ=0.2482, σ=0.584, α=1.583438, Кс=3.438. Получили Zc=0.29086.

УС ВТЦ для аргона

$$P_{R} = \frac{1}{0.291V_{R}} \left[1 + \frac{0.2482}{V_{R} - 0.146} - \frac{1.583438}{V_{R} + 0.584} \right]$$
(17)

V _R	P_R	P_R	Δ ,%	P_R	Δ , %	<i>P_R</i> (ВТЦ	Δ,	R-Kw	Δ,%
ĸ	(NBS)	(ВТЦ-		(ВТЦ		УС(17)	%		
		УC(3;-1)		УC(16)					
1	2	3	4	5	6	7	8	9	10
100	0,03395	0,03383	-0,35	0,033927	-0,168	0,0342287	-0,82	0,03394	-0,03
20	0,16209	0,16033	-1,09	0,160825	-0,78	0,1606414	-0,89	,016187	-0,13
5	0,54073	0,52415	-0,66	0,528393	-2,28	0,5262710	-2,67	0,53993	-0,15
2,5	0,83428	0,80476	-3,54	0,818798	-1,85	0,81320148	-2,52	0,83837	+0,5
1,25	0,99556	0,98166	-1,4	1.003461	0,79	0,9929	+0,26	0,99936	+0,38
10/9	0,99946	0,99138	-0,81	1.009748	1,029	0,9985131	0,094	1,0000	+0,06
1	1,0000	,99991	-0,009	1,011353	1,13	0,9993495	+0,06	1,0033	+0,38
10/11	1,0006	1,0129	+1,23	1,013001	1,239	1,000166	0.043	1,0195	+1,9
10/12	1,0058	1,0359	+2,99	1,019048	1,317	1,005236	0,05	1,0598	+5,4
10/14	1,0685	1,1383	+6,5	1,06047	-0,75	1,043962	2.29	1,2646	+18,0
10/16	1,3426	1,3370	-0,42	1,1669	-13.109	1,1463112	14.62	1,7432	+30,0
Средн. абс. отклонение, %			<1,67>		<2,2>		<2.2		14,62
							>		
10/18	2,1534	1,6963	-21,23	1,36568	-36.58	1,33846432	37.84	2,6716	+24,0
Средн. абс. отклонение, %		<3,3>		<4,88>		<5,17		<7,3>	

Результаты расчетов – в Таблице 4.2

Среднее абсолютное отклонение составило для той же области значений приведенных плотностей (до первого «всплеска» погрешностей расчета). 0.97%. Самая интересная область V_R: (1.25- 0.8) описана с точностью 0.1 %.

Заключение

1. Полученные в отчетном году результаты представляют несомненный интерес. Особенно с тех позиций, что речь идет о физически обоснованных, связанных с молекулярными свойствами объектов, УС. Причем пока это самый простой вариант УС, получаемых при условии χ=const. В то же время уже получено более общее - структурированное - УС, когда с параметров снято требование постоянства

$$P = \frac{RT}{V} + \frac{RTb}{V(V-b)} - \frac{a}{V(V+b(k_1 + k_2b/V))}$$

Это УС было исследовано нами в [10]. Все параметры УС определяются набором двух – генерирующих - чисел k₁, и k₂, которые оказывается возможно связать с двумя типами движений, доступных точечному центру. В табл. мы привели результат расчета для одного из таких УС. Эти предварительные данные подтверждают возможность дальнейшей оптимизации конструируемой молекулярно-термодинамической модели.

2. Результаты, полученные для УС ВТЦ – моделей термодинамического уровня – и связывающие их с уровнем молекулярным, представляются весьма обнадеживающими. Это обстоятельство обосновало возвращение на новом витке к центральным потенциалам Ми (m-n). Подробный анализ данных, полученных для глобулярных молекул в [48], был проведен учетом возможностей, появляющихся при введении в описание с межмолекулярной потенциальной кривой точки перегиба. Анализ привел к представлению о существовании для каждой из глобул двух ПК-компаньонов из семейства Ми (6-n). Эти представления, совершенно новые для области моделирования межмолекулярных взаимодействий, требуют активного продолжения исследований.

3. Ценность полученных результатов подчеркивается их значением при моделировании смесей - если для чистых веществ параметры УС могут рассматриваться как подгоночные, в случае смесей у них должен быть установлен физический смысл [48].

ЗАКЛЮЧЕНИЕ

Экспериментальные и теоретические задачи, поставленные по лаборатории ТВЭ за 2019 год были полностью решены. Полученные результаты могут быть рекомендованы для использования в инженерных расчетах при проектировании энерговырабатывающихся систем, для оптимизации этих расчетов и при разработке термодинамической модели подземных геотермальных резервуаров. А также данные о PVT свойствах пропилового спирта будут использованы в Термодинамическом Центре НИСТ для разработки RFERENCE уравнения состояния и будет включен в REFPROP. Экспериментальные исследования были проведены на высоком мировом уровне. Об этом свидетельствуют ряд публикаций в ведущих международных журналах с высоким импакт фактором (J. Chem. Thermodynamics, J. Molecular Liquid, J. Supercritical Fluids, J. Chemical Engineering Data, Appl. Geochemistry и т.д.) и в трудах крупных Международных Конференций. Экспериментальные исследования выполнялись на уникальных оборудованиях, разработанных в лаборатории ведущими специалистами на основе передовых методов, которые получили мировое признание. Достоверность полученных данных не вызывает сомнений т.к. они уже прошли независимую экспертизу зарубежных экспертов при их публикации. А также основные экспериментальные данные включены в базу данных НИСТ (США) после прохождения экспертизы на их достоверность (TDE TEST). Исследования проводились при сотрудничестве с крупными научными центрами мира (Австрия, Китай, США). Ряд результатов были опубликованы в ведущих международных журналах совместно с иностранными коллегами. Лаборатория включена в состав Международного Центра Теплофизических Исследований созданной в Китае при Министерстве Науки и Образований Китая.

Используемая литература

1.Макаров А.А., Фортов В.Е. // Вестник Российской академии наук. 2004. Т.24. №3. С. 195-208.

2. Безруких П.П. // Энергия: экономика, техника, экология. 2002. №10. С.2-8.

3. Типы и мощности геотермических установок. Warme und Strom aus der Tiefe. Shuiz Anja. Sonne Wind und Warme. 2001. №4. Р.71-73 (Нем.).

4. Поваров О.А., Томаров Г.В. Всемирный геотермальный конгресс // Теплоэнергетика. 2001. №2. С.74-77.

5. Дворянчиков В.И., Джаватов Д.К. Термодинамические свойства геотермальных флюидов применительно к задачам оптимизации геотермальных систем . // Труды Института геологии Дагестанского научного центра РАН. 2009. № 55. С.186-188.

- 6. Амирханов Х.И., Степанов Г.В., Алибеков Б.Г. Изохорная теплоёмкость воды и водяного пара. Махачкала. 1969. 216 с.
- 7. Дворянчиков В.И., Джаватов Д.К., Г.А. Искендеров Э.Г., Рабаданов Изохорная теплоёмкость водных растворов хлорида магния. Материалы V Международной конференции «Возобновляемая энергетика: проблемы И перспективы» Махачкала. Вып.6. Т.1. 2017. С.290-297.
- 8. Дворянчиков В.И., Джаватов Д.К., Рабаданов Г.А., Искендеров Э.Г., Шихахмедова Д.П.
- // Юг России: экология, развитие. 2016. Т.11. №2. С.121- 131.
- Шихахмедова Д.П., Дворянчиков В.И., Джаватов Д.К. Изохорная теплоёмкость водных растворов хлорида кальция. / Материалы IV Международной конференции «Возобновляемая энергетика: проблемы и перспективы» Махачкала. 2015. Вып.5. Т.1. С.336-342.

- 10. Дворянчиков В.И. Термодинамические свойства и фазовые равновесия водных растворов электролитов. Наука-Дагестан. Махачкала. 2016. 292с.
- 11. Александров А.А., Григорьев Б.А. Таблицы теплофизических свойств воды и водяного пара. Изд-во МЭИ. Москва. 2003. 164 с.
- 12. Карабекова Б.К., Базаев А.Р. Уравнение состояния для смесей вода–спирт в широком диапазоне параметров состояния // ЖФХ, 2015, Т.89, №9, С.1386-1396.
- 13.Шиманский Ю.И., Шиманская Е.Т. Расширенное масштабное уравнение для параметра порядка бензола в области фазового равновесия жидкость-пар // ЖФХ. 1996. Т.70. №3. С.443.
- 14.Euchen A., Debye P. Vortage unber die Kinetische Theorie der Materie und Electricitat.-Berlin, 1914.
- 15. *Klemens P.G.* // Solid State Physics. Adv.Res.Appl.,V.7. Chpt.1.Eds.F.Seitz. // *Turnbull D.* N.Y: Acad. Press. 1958. P.1-98.
- 16. Debye P. Vortrage uber die Kinetische Theorie der Materie und Electricitat. Berlin, 1914.
- 17. Пайерлс Р. Квантовая теория твердых тел.М.: И.Л., 1956. -324 с.
- 18. Петров А.В., Стильбанс Л.С. Проявление аморфных свойств в теплопроводности некоторых полупроводниковых кристаллов. Тр.VI Межд. конф. По аморфным и жидким полупроводникам. Л.1975. С.122-126.
- 19.Воларович М.П., Баюк Е.И., Левыкин А.И., Томашевская И.С. Физико-механические свойства горных пород и минералов при высоких давлениях и температурах. М.:Наука. 1974. 223с.
- 20. Оскотский В.С., Смирнов И.А. Дефекты в кристаллах и теплопроводность. Изд-во Лен. Наука.1972. 157 с.
- 21. Стрельцов В.А. Напряженное состояние бикристалла, вызванное всесторонним гидростатическим сжатием // Физ. и техн. выс. давлений. 1983.- 14. С. 24-29.
- 22. Кайбышев О.А., Валиев Р.З. // Бюлл. Открытия изобретения. 1988. №7. Диплом №339э
- 23. Амирханов Х.И., Магомедов Я.Б., Эмиров С.Н. Влияние всестороннего давления на теплопроводность теллура // ФТТ. 1973.Т.5. В.5. С.1512-1515.
- 24. Баталин О.Ю., Брусиловский А.И., Захаров М.Ю. Фазовые равновесия в системах природных углеводородов. М: Недра, 1992. 272 с.
- 25. Уэйлес С., Фазовые равновесия в химической технологии: В 2-х ч.- М.: Мир, 1989.
- 26. Anderko A. Equation of state methods for the modeling of phase equilibria// Fluid Phase Equilibria 1990. 61.-P.145-225.
- 27. Redlich O. and Kwong J.N.S., On the Thermodynamics of Solutions. V. An Equation of state. Fugasities of gaseous solutions// Chem.Rev., 1949.- 44.- P. 233-244.
- 28. Вукалович М.П., Новиков И.И. Уравнение состояния реальных газов. М.-Л. Энергоиздат.1948.
- Anderko A. Cubic and generalized van der Waals equations/ Equations of state for fluids and fluid mixtures. Part I. Experimental Thermodynamics Volume V. Edited by J.V.Sengers, R.F.Kayser, C.J. Peters and H.J.White, Jr. 2000. Elsevier .p.75-126.
- Carnahan, N.F., and K.E.Starling, Equation of State for non-attracting Rigid Spheres, J.Chem.Phys. 1969. 51. P. 635.; Intermolecular Repulsions and the Equation of State for Fluids. AIChE J. 1972. 18. P. 1184.
- 31. Петрик Г.Г. Мониторинг. Наука и технологии. 2009.1.С.43-59
- 32. Петрик Г.Г. // Мониторинг. Наука и технологии. 2010. 3. С.84-97.
- 33. Петрик Г.Г. Мониторинг. Наука и технологии. 2010. 2. С.79-92.
- 34. Петрик Г.Г. / Мониторинг. Наука и технологии. 2011. 4. С.81-90.
- 35. Петрик Г.Г. Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов: межвуз. сб. науч. тр., Тверь: ТГУ2011. Вып. 3. С. 181-187.
- 36. Петрик Г.Г. Вестник Новгородского университета. 2017.5(103). 36-43.
- 37. G G Petrik. 2017. J.Phys.: Conf. Ser. 891 012328

- 38. Петрик Г.Г. Материалы XI школы мол. уч. им. Э.Э. Шпильрайна «Актуальные проблемы освоения возобновляемых энергоресурсов», Махачкала. 2018. 15 окт. 405-409
- 39. Петрик Г.Г. Процессы в геосредах. 2016. 3. С. 255-266.
- 40. Петрик Г.Г. Мониторинг. Наука и технологии. 2016.– № 3 (28). С.58-71.
- 41. Петрик Г.Г. Межвуз. Сб. науч. трудов «Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов», ТГУ, 2017, Вып.9,363-374.
- 42. Петрик Г.Г. Мониторинг. Наука и технологии. 2017. 2. С. 70-81.
- 43. Петрик ГГ. Мониторинг. Наука и технологии. 2018. 2. С. 70-81.
- 44. Ishikawa T., Chung W., Lu B. AIChE J. 1980. 26. P.372-378.
- 45. А.Б.Каплун, А.Б.Мешалкин. Ж. физической химии. 2001. Т.75. № 12. 2135-2141.
- 46. E.Usdin, I.C.McAuliffe. Chemical engineering science. 1976. 31. 11. P. 1077.
- 47. Wong J.O., Prausnitz J.M. Chem.Eng. Commun. 1985. 37. P. 41-53.
- 48. Л.Р. Фокин, Л.Заркова, М.Дамянова. ТВТ. 224.т.342.№6.с.878-884

Публикации лаборатории

Статьи в периодических изданиях и сборниках статей:

- 1. Гусейнов А.Г., Ярмаммедли С.Д., Дворянчиков В.И., Исследование Р-ρ-Т зависимости алифатических спиртов. Журнал «Известия вузов. Северокавказский регион. Технические науки». 2019. № 2. С.75-80.
- Искендеров Э.Г., Вердиев Н.Н., Арбуханова П.А., Зейналов М.Ш., Дибиров Я.А., Дворянчиков В. И. Установка термического анализа для исследования конденсированных сред. Вестник ДГУ. Серия 1. Естественные науки. Физика конденсированного состояния. 2019. С. 62-80.
- Iskenderov E.G., Dvoryanchikov V.I., Dibirov Y.A. Thermal analysis method for the study of condensed matter. International Conference «Process Management and Scientific Developments». Novotel Birmingham Centre. Birmingham. 2019. T.1. P. 63-73.
- 4. Базаев Э.А., Базаев А.Р. Фазовые превращения жидкость ≒ пар и критические свойства системы C₃H₇OH–C₅H₁₂ // Теплофизика высоких температур, 2019, том 57, № 3, с. 390–396
- 5. Базаев А.Р., Базаев Э.А. Объемные свойства природного газа, залегающего в пластах в условиях высоких температур и давлений // Деловой журнал Neftegaz.RU. 2019. № 10 (94). С. 112-116.
- 6. Базаев Э.А., Базаев А.Р. Фазовые превращения жидкость-пар и критические свойства системы C3H7OH–C5H12 // Теплофизика высоких температур, 2019, том 57, № 3, с. 390–396.
- 7. E.A. Bazaev, A.R. Bazaev. Phase transitions and critical properties of 1-propanol–n-hexane system // Journal of Physics: Conference Series 1385 (2019).
- 8. I.M. Abdulagatov, A.R. Bazaev, E.A. Bazaev, B.K. Osmanova. Phase transitions and volumetric properties of the ternary system water+1-propanol+n-hexane near the critical point // Journal of Physics: Conference Series 1385 (2019) 012003.
- 9. B.K. Osmanova, A.R. Bazaev, E.A. Bazaev. Experimental research of thermodynamic properties of water + aliphatic alcohol mixtures in the wide range of parameters of state // Journal of Physics: Conference Series 1385 (2019) 012015.
- 10. T.A-G. Dzhapparov, A.R. Bazaev. Experimental determination of destruction of thermally unstable substances // Journal of Physics: Conference Series 1385 (2019) 012029.
- 11. E.A. Bazaev, A.R. Bazaev Liquid–Vapor Phase Transitions and Critical Properties of the C3H7OH–C6H14 System // High Temperature, 2019, Vol. 57, No. 3, pp. 355–360.
- 12. С.Н. Эмиров, А.Э. Рамазанова, А.И. Ибрагимов. О фазовом переходе 2-го рода под давлением в диэлектриках и горных породах. Изв. РАН, сер.физ. 2019. Т. 83. № 6. С. 826-829.

- S. N. Emirova, A. E. Ramazanovaa, and A. I. Ibragimov. Phase Transitions of the Second Kind in Polycrystalline Compounds and Rocks under Pressure. Bulletin of the Russian Academy of Sciences: Physics, 2018, Vol. 83, No. 6, pp. 752–755.
- 14. Рамазанова А.Э., Абдулагатова З.З. Барический и температурный коэффициенты теплопроводности горных пород. Ж. Мониторинг. Наука и технологии. 2019. № 1(39). С.53-56.
- 15. Рамазанова А.Э. Поведение теплопроводности черного угля при высоких температурах. Ж. Мониторинг. Наука и технологии. 2019. № 3(41). С.73-76.
- С.Н. Эмиров, Ш.М. Алхасов, В.Д. Бейбалаев, А.А.Амирова, А.А.Аливердиев. Описание температурно-барической зависимости теплопроводности естественных и искусственных композитов. Ж. Тепловые процессы в технике. 2019. Т. 11. №3. С. 34-37.
- 17. S.N. Emirov, V.D. Beybalaev, A.A. Amirova, A.I. Ibragimov, and A.A. Aliverdiev, Thermal Conductivity Temperature-Pressure Dependence of Rocks and Ceramics // Journal of Physics: Conf. Series. 2019. V. 1172. 012006.
- 19. Эмиров С.Н., Рамазанова А.Э., Джаватов Д.К., Бейбалаев В.Д., Амирова А.А., Давудов И.А., Аливердиев А.А., Экспериментальные и теоретические исследования коэффициента эффективной теплопроводности горных пород в условиях высоких давлений и температур // Вести газовой науки. 2019. № 5 (37). С. 129-132 (ВАК, номер в Перечне рецензируемых научных изданий (по состоянию на 09.08.2018) 1403
- 20. Петрик Г.Г. О выборе оптимальных малопараметрических физически обоснованных уравнений состояния// Мониторинг. Наука и технологии. 2019. 1. С. 44-52.
- 21. Петрик Г.Г. Точка перегиба потенциальной кривой и новые возможности при моделировании межмолекулярных взаимодействий// Мониторинг. Наука и технологии. 2019. З. С. 59-72.
- 22. Петрик Г.Г. Межмолекулярные потенциальные кривые –«компаньоны» и прогноз на их основе критических параметров / Межвузовский сборник научных трудов «Физикохимические аспекты изучения кластеров, наноструктур и наноматериалов», Тверской гос.университет, 2019, Выпуск 11, С. 636-644.
- 23. GG Petrik On round dates, acute issues and solving problems of low-parametric equations of state by logical abduction// J. Phys.: Conf. Series 1385 012016

Тезисы докладов, материалы конференций:

- 1. Искендеров Э.Г., Вердиев Н.Н., Арбуханова П.А., Зейналов М.Ш., Дибиров Я.А., Дворянчиков В. И. Установка термического анализа на базе универсального измеритель-регулятора ТРМ136 // II Съезд химиков РД. Махачкала: Изд-во ДГУ. 2019. С.169-171.
- 2. Iskenderov E.G., Dvoryanchikov V.I., Dibirov Y.A. Thermal analysis method for the study of condensed matter. International Conference «Process Management and Scientific Developments». Novotel Birmingham Centre. Birmingham. 2019. T.1. P. 63-73.
- 3. Bazaev A.R., Bazaev E.A., Osmanova B.K., Dzhapparov T.A-G. Liquid≒Gas Phase Transitions of 1-Propanol n-Hexane Binary and Water 1-Propanol n-Hexane Ternary Mixtures // Book of Abstracts XXII International Conference on Chemical Thermodynamics in Russia. Saint Petersburg, Russia RCCT-2019 June 19-23, 2019. p.260.
- 4. Osmanova B.K, Bazaev A.R., Bazaev E.A. Liquid≒Gas Phase Transitions Water+Aliphatic Alcohol Binary Mixtures // Book of Abstracts XXII International Conference on Chemical Thermodynamics in Russia. Saint Petersburg, Russia RCCT-2019 June 19-23, 2019. p. 252.
- Dzhapparov T.A-G., Bazaev A.R., Bazaev E.A., Bagavudinova D.G., Medzhidova F.Kh. Evaluation of Thermal Stability Duration (Useful Life) of Organic Heat-Carriers // Book of Abstracts XXII International Conference on Chemical Thermodynamics in Russia. Saint Petersburg, Russia RCCT-2019 June 19-23, 2019. p. 232.

- 6. Османова Б.К., Базаев А.Р., Базаев Э.А. Энергетическая эффективность сверхкритического флюида вода–1-пропанол как рабочего тела паросиловых установок // Тезисы докладов Х Научно-практической конференции с международным участием «Сверхкритические флюиды: фундаментальные основы, технологии, инновации». 30 сентября-06 октября 2019г. г. Ростов-на-Дону. С. 266-271.
- Базаев А.Р., Базаев Э.А. Термодинамические свойства системы 1-пропанол–н-гексан в критической и сверхкритической области параметров // Тезисы докладов X Научнопрактической конференции с международным участием «Сверхкритические флюиды: фундаментальные основы, технологии, инновации». 30 сентября-06 октября 2019г. г. Ростов-на-Дону. С. 642-647.
- Базаев А.Р., Базаев Э.А. Фазовые превращения и Р, р, Т-зависимости системы нгексан-вода // Тезисы докладов Х Научно-практической конференции с международным участием «Сверхкритические флюиды: фундаментальные основы, технологии, инновации». 30 сентября-06 октября 2019г. г. Ростов-на-Дону. С. 648-651.
- 9. Ю.П. Заричняк, А.Э. Рамазанова, С.Н.Эмиров. Теплопроводность двойных непрерывных неупорядоченных твердых растворов. 22-й межд. симп. «Упорядочение в минералах и сплавах» ОМА-22, Ростов-Дон, 2019. С. 181-184.
- 10. S.N. Emirov, Ya.M. Magomedov, A.A. Amirova, A.A. Aliverdiev. Analysis of the experimental temperature-baric dependences of the thermoelectric properties of semiconductors. Abstracts of conference on modern concepts and new materials for thermoelectricity. ICTP, Trieste, Italy,11 15 March 2019.
- S.N. Emirov, V.D. Beybalaev, A.A. Amirova, A.I. Ibragimov, A.A. Aliverdiev. Thermal Conductivity Temperature-Pressure Dependence Rocks and Ceramics. Journal of Physics: Cconference Series. 2019. Conf. Ser. 1172 012006.
- 12. С.Н. Эмиров, А.А. Аливердиев, В.Д. Бейбалаев, А.А. Амирова, Р.М. Алиев, И.А. Давудов. К описанию температурно-барической зависимости теплопроводности естественных и искусственных композитных материалов. Фазовые переходы, критические и нелинейные явления в конденсированных средах. Сборник трудов международной конференции. Махачкала. 2019. С. 433-435.
- 13. С.Н. Эмиров, В.Д. Бейбалаев, А.А.Амирова, А.А.Аливвердиев. К описанию температурно – барической зависимости теплопроводности сред с различной упорядоченностью на примере халькогенида мышьяка. Тезизы международной научно-практической конференции « Новые идеи в науках о Земле». Т. 1V. « Инновационные и цифровые технологии геологической разведки, горном деле, Бурении скважин». 2-5 апреля 2019 г. Москва. С. 506-508.
- 14. В.Д. Бейбалаев, С.Н.Эмиров, А.А, Аливердиев, А.А.Амирова, А.З. Якубов. Исследования теплопроводности и теплоёмкости гранитов. Итоги науки и техники. Современная математика и её приложение. Тематические обзоры. Т. 999. 2019. С.1-6.
- 15. С.Н. Эмиров, Э.Н. Рамазанова, М.А. Кузнецов. Экспериментальные исследования коэффициента эффективной теплопроводности флюидонасыщенных горных пород при различных термобарических условиях для оценки коллекторских свойств нефтяных и газовых месторождений. 14-я международная научно-практическая « Новые идеи в науках о Земле». Россия, Москва, МГГУ. 02-05 апреля 2019. С. 506- 509.
- 16. Эмиров С.Н., Бейбалаев В.Д., Амирова А.А., Аливердиев А.А., Закономерности изменения теплопроводности керамики в условиях высоких давлений и температур // Материалы IV Международной научной конференции «Актуальные проблемы прикладной математики», Кабардино-Балкарская республика, Эльбрус, 22 – 26 мая 2018 г.
- 17. Бейбалаев В.Д., Эмиров С.Н., Аливердиев А.А., Амирова А.А., Якубов А.З., Численное исследование процессов теплопереноса в горных породах // Материалы V Международной научной конференции «Нелокальные краевые задачи и родственные

проблемы математической биологии, информатики и физики», 4–7 декабря 2018 г., г. Нальчик, стр. 4.

- 18. Петрик Г.Г. Межмолекулярные потенциальные кривые –«компаньоны» и прогноз на их основе критических параметров / Межвузовский сборник научных трудов «Физикохимические аспекты изучения кластеров, наноструктур и наноматериалов», Тверской гос.университет, 2019, Выпуск 11, С. 363-374. DOI: 10.26456/pcascnn/2017.9.363
- Petrik GG.An Equation of State –what? Methods of Choise in the Model of interacting Centers / XXIV International Conference on Interaction of intense Energy Fluxes with Matter/ Elbrus Kabardino-Balkaria Russia (March 1-6 2019). - P. 69.
- 20. Петрик Г.Г. О круглых датах, острых вопросах и решении проблем малопараметрических уравнений состояния методом логической абдукции / Сб. трудов, Российская конференция (с международным участием) по теплофизическим свойствам веществ (РКТС-15)/ Москва (15-17 октября 2018). – Р. 29-30.
- 21. Петрик ГГ Методика выбора оптимальных уравнений состояния на основе молекулярной модели взаимодействующих точечных центров/ IX международная научная конференция «Химическая термодинамика и кинетика», Сб. научных трудов / Тверь (20 -24 мая 2019г.). С. 238.
- 22. Abdulagatov I.M. Mechanism of heat transfer in the heavy oil saturated rock materials. 2nd Int. Summit on Energy Science and Technology (China, April-2019);
- 23.A Sagdeev D.I., Gabitov I.R., Fomina M.G., Alyaev V.A., Minkin V.S., Abdulagatov I.M. Viscosity and density of vacuum oils for diffusion pumps, 2019 (RTPC, 2019), Moscow-2019, Российская Теплофизическая Конференция с Международным участием.
- 24. Abdulagatov I.M., Bazaev A.R., Bazaev E.A., Osmanova B.K. Phase transitions and bulk properties of the ternary system water+1-propanol+n-hexane near the critical point, 2019, Moscow-2019, Российская Теплофизическая Конференция с Международным участием.
- 25. I.Abdulagatov, Z. Abdulagatova, S. Kallaev, A. Bakmaev, Z. Omarov, Heat transfer mechanism in oil saturated rock materials at high temperatures, 2nd Journal of Thermal Analysis and Calorimetry Conference and 7th V4 (Joint Czech-Hungarian-Polish-Slovakian) Thermoanalytical Conference / JTACC+V4 2019, June 18–21, 2019 / Budapest, Hungary
- 26. I.M. Abdulagatov, N.G. Polikhronidi, R.G. Batyrova ,Simultaneously measurements of the pvt, thermal –pressure coefficient, and isochoric heat capacity of benzene and 2-propanol in the critical and supercritical regions, 2nd Journal of Thermal Analysis and Calorimetry Conference and 7th V4 (Joint Czech-Hungarian-Polish-Slovakian) Thermoanalytical Conference / JTACC+V4 2019, June 18–21, 2019 / Budapest, Hungary
- I.M. Abdulagatov, N.G. Polikhronidi, R.G. Batyrova ,Simultaneous measurements of the temperature and specific volume derivatives of internal energy of benzne in the critical and supercritical regions, 22 "International Conference on Chemical Thermodynamics in Russia" Book of Abstracts, p. 206. June 19-23, 2019, Saint Petersburg, Russia.
- 28. <u>I.M. Abdulagatov</u>, N.G. Polikhronidi, R.G. Batyrova. Supercritical CO2 and Carbon Dioxide Containing binary Mixtures. Thermodynamic and Transport Properties and new Technological Applications-Review. Сверхкритические флюиды: фундаментальные основы, технологии, инновации, 10 Научно- практическая конференция с международным участием 30 сентября 6 октября 2019, стр.172-174. г. Ростов на Дону.
- 29. N.G. Polikhronidi, R.G. Batyrova, I.M. Abdulagatov, Isochoric Heat Capacity Measurements of the Pure n-Hexane and n-Hexane + IL Mixture along the Critical Isochore, Turkey, 2019
- Абдулагатов И.М. Конф. посвященной Акад. Скрипову, XX Юбилейная всероссийская школа-семинар по проблемам физики конденсированного состояния вещества (СПФКС-20), Екатеринбург, 21 - 28 Ноября 2019 г.